next up previous
Next: About this document ...

Exercises

1. For the functions and the values of a given below, go through the following steps:

\begin{displaymath}
1. f(x) = 2x+1, \;\; a=2\end{displaymath}

\begin{displaymath}
2. f(x) = \frac{2x+1}{x-1},\;\; a=1\end{displaymath}

\begin{displaymath}
3. f(x) = \frac{2x+1}{x-1},\;\; a=0\end{displaymath}

\begin{displaymath}
4. f(x) = \frac{\sin (x) + x^2}{x}, \;\; a=0\end{displaymath}

2. Determine the constants a and b that will make continuous the following function

\begin{displaymath}
f(x)=\left\{ \begin{array}
{ll} x^2+a \;\; &\mbox{if} \; x<0...
 ...mbox{if}\; x=0 \\ bx+b \;\; &\mbox{if}\; x\gt\end{array}\right.\end{displaymath}

3. Define the function

\begin{displaymath}
f(x) = \left\{\begin{array}
{ll} \displaystyle{\frac{\tan x}...
 ...{if} \; x\neq 0 \\ 1 \;\; &\mbox{if} \; x= 0 \end{array}\right.\end{displaymath}

Determine if the function is continuous at x=0





DUE DATE: FEBRUARY 1 (in class).


 

Christine Marie Bonini
1/27/1999