next up previous
Next: About this document ...


1. Describe how the commands in the last set of Maple examples illustrate the definition of derivative as the limit of the slope of a secant line.

2. Specify the natural domain for each of the functions given below. Find the derivative of each of the functions both from the definition and using the D command.

i. f(x) = 2x2+1,

ii. f(x) = (x2+1)5

iii. f(x) = \cos (x^3)\end{displaymath}

iv. f(x) = \frac{\sin (1/x) + x^2}{x}\end{displaymath}

3. Define the function

f(x) = \left\{\begin{array}
{ll} 2x^2+3\;\; &\mbox{if} \; x ...
 ...\sin({\pi x}/2)+3x\;\; &\mbox{if} \; x\geq 1 \end{array}\right.\end{displaymath}

Determine the derivative for all values of x for which it exists. Justify your result.

4. Determine the constants a, b and c that will make the following function differentiable

f(x)=\left\{ \begin{array}
{ll} x^2+a \;\; &\mbox{if} \; x<0...
 ...=0 \\ \sin (x) - bx + c\;\; &\mbox{if}\; x\gt\end{array}\right.\end{displaymath}

DUE DATE: FEBRUARY 8 (in class).


Christine Marie Bonini