Exponentials and Logarithms

When the exponential function $f(x)=b^{x}$ was introduced, (for $b \neq 1, b>0$) you saw that the function is increasing if $b>1$ and decreasing if $b<1$. You can observe the monotonicity by plotting e^{x} and 0.1^{x}.
$>\operatorname{plot}(\exp (x), x=-1 . .1)$;
$>\operatorname{plot}\left(0.1^{\wedge} \mathrm{x}, \mathrm{x}=-1.1\right.$);
The logarithmic function $\log _{b} x$ was introduced for $b>0, b \neq 1$ as the inverse of the exponential. The logarithm is therefore inreasing if $b>1$ and decreasing if $0<b<1$. Indeed you can plot $\log _{10} x$ and $\log _{0.1} x$.
> $\mathrm{plot}(\log [10](\mathrm{x}), \mathrm{x}=0.1 \mathrm{I} 10)$;
$>\operatorname{plot}(\log [0.1](x), x=0.1 \ldots 10)$;
From the monotonicity properties you can compare two logarithms having the same base without computing their values:

$$
\begin{aligned}
& \log _{5} 10<\log _{5} 12 \\
& \log _{1 / 2} 9<\log _{1 / 2} 6
\end{aligned}
$$

From the monotonicity properties you can see that for a fixed x in the interval $(0,1)$ the logarithm increases with b but for x in the interval $(1, \infty)$ it decreases. As a result you can now compare logarithms with different bases without computing their values.

$$
\begin{aligned}
\log _{3} 7 & <\log _{2} 7 \\
\log _{1 / 2} 5 & <\log _{1 / 3} 5
\end{aligned}
$$

Here are some examples using Maple to solve logarithmic and exponential equations.

$$
\begin{aligned}
& 5^{x+1}+5^{x}+5^{x-1}=155 \\
& \log _{5}\left(2 x^{2}+2 x+5\right)=2
\end{aligned}
$$

$>$ solve $\left(5^{\wedge}(x+1)+5^{\wedge} x+5^{\wedge}(x-1)=155, x\right)$;
> solve (log [5] $\left.\left(2 * x^{\wedge} 2+2 * x+5\right)=2, x\right)$;

Inverse Functions

Consider the functions f, g defined by

$$
f(x)=e^{x}+e^{-x}, g(x)=7 x+\frac{14}{3}
$$

To be able to get an inverse the function must be one-to-one. You can plot the functions to get a hint as to whether they are invertible or not.
$>\mathrm{f}:=\mathrm{x}->\exp (\mathrm{x})+\exp (-\mathrm{x})$;
$>\operatorname{plot}(f(x), x=-5 . .5)$;
$>\mathrm{g}:=\mathrm{x}->7 * \mathrm{x}+14 / 3$;
$>\operatorname{plot}(\mathrm{g}(\mathrm{x}), \mathrm{x}=-10 . \mathrm{10})$;
Both satisfy the vertical-line test but $f(x)$ is not invertible since it does not satisfy the horizontal-line test. Indeed f is not one-to-one, for instance $f(0.5)=f(-0.5)$. From the plot it seems that the function g is one-to-one. In order to determine its inverse we solve for x .
> solve($\mathrm{g}(\mathrm{x})=\mathrm{y}, \mathrm{x})$;
Thus:

$$
g^{-1}(y)=\frac{y}{7}-\frac{2}{3}
$$

> ginv:=x->x/7-2/3;
Now that x and y have been switched let's look at the plot along with the line $y=x$ to see if our functions seem to make sense.
$>\operatorname{plot}(\{x, g(x), \operatorname{ginv}(x)\}, x=-10 . .10, y=-10 . .10)$;
Notice that the functions are mirrored about the $y=x$ line. Let's check that we have computed the right inverse. By definition the composition of the functions should be the line $y=x$ since an inverse is the reflection about this line.

$$
\left(g \circ g^{-1}\right)(y)=y=\left(g^{-1} \circ g\right)(x)=x
$$

$>g(\operatorname{ginv}(y)) ;$
$>\operatorname{ginv}(\mathrm{g}(\mathrm{x}))$;

Exercises

1. Solve for x in the equations.
(a)

$$
\ln (x)+x^{x}=e
$$

(b)

$$
\ln (x)+\ln (x+1)=2
$$

(c)

$$
3^{x}+2^{x}=5^{x}
$$

(d)

$$
\log _{10}(100)=\frac{\sqrt{x}}{7}
$$

2.

$$
\begin{gathered}
g(x)=e^{x}-4 \\
f(x)=3^{x} \\
h(x)=\frac{\ln \left(x^{3}-1\right)}{x}
\end{gathered}
$$

A Plot the three functions. State whether each function is invertible or not and why.
B Find the inverse of the invertible function(s).
C Plot each of the functions and its inverse along with the line $y=x$.

