Next: About this document ...
Up: lab_template
Previous: Area Approximations
- Consider the area under the curve
on the
interval
.
- Use the formula for the area of a circle to compute the exact
value of this area.
- Using the left endpoint rule, find the minimum number of
subintervals required to approximate this area to within a tolerance
of
. That is find the value of
such that
, but
.
- Consider the function
on the interval
.
- Use the error bound formula to find the smallest value of
that
guarantees that
approximates the area to within
. That
is, find the smallest value of
that guarantees that
.
- The value of
given by the error bound is usually
conservative. That is, in practice the desired accuracy can be
achieved with a smaller value of
. Given that
find the smallest value of
such that
and
compare it to the value you obtained in the previous exercise.
- Repeat the previous exercise, but use the left endpoint
rule. That is, find the smallest value of
such that
Your value of
should be much larger than the one in the previous
exercise.
- The midpoint rule is usually a much better approximation to the
area than either the left endpoint or right endpoint rules. However,
suppose you approximate the area by taking the average of the values
given by the left endpoint or right endpoint rules. That is, we define
a new approximation
by
Using the same function
and the same interval
, find the smallest value of
such that
Is this value of
closer to the one you found for the midpoint rule
or the one you found for the left endpoint rule? Does this make sense
to you?
Next: About this document ...
Up: lab_template
Previous: Area Approximations
Dina Solitro
2001-01-12