Next: About this document ...
Up: lab_template
Previous: lab_template
Subsections
The use of polar coordinates allows for the analysis of families of curves difficult to handle through rectangular coordinates. If a curve is a rectangular coordinate graph of a function, it cannot have any loops since, for a given
value there can be at most one corresponding
value. However, using polar coordinates, curves with loops can appear as graphs of functions
When you graph curves in polar coordinates, you are really working with parametric curves. The basic idea is that you want to plot a set of points by giving their coordinates in
pairs. When you use polar coordinates, you are defining the points
in terms of polar coordinates
. When you plot polar curves, you are usually assuming that
is a function of the angle
and
is the parameter that describes the curve.
In Maple you have to put square brackets around the curve and add the specification coords=polar. Maple assumes that the first coordinate in the parametric plot is the radius
and the second coordinates is the angle
.
These are three types of well-known graphs in polar coordinates. The
table below will allow you to identify the graphs in the exercises.
Name |
Equation |
cardioid |
or
 |
limaçon |
or
 |
rose |
or
 |
Below is an example of a cardiod.
>plot(1-cos(theta),theta=0..2*Pi,coords=polar);
The relationship between area and integrals in polar coordinates is a little strange; the area inside a circle given (in polar coordinates) by
is NOT just
. Here is the rule:
Area inside
is given by
. This comes from the fact that the area in a thin wedge with radius
and angle
is
. Note that this gives you the right answer for a circle:
. So to find the area of the cardiod use the following command.
>Area1:=1/2*int((1-cos(theta))^2, theta=0..2*Pi);
>evalf(Area1);
- For each of the following polar equations, plot the graph in polar coordinates using the plot command and identify the graph as a
cardioid, limaçon, or rose.
-
-
-
-
- Find all points of intersection for each pair of curves in polar
coordinates.
-
and
for
.
-
and
for
.
- Find the angles that create only one petal of the five petal rose given by the equation
. Plot only one petal and find the area of that petal.
Next: About this document ...
Up: lab_template
Previous: lab_template
Dina J. Solitro-Rassias
2013-09-21