Improper integrals and probability density functions

Introduction

Improper integrals like the ones we have been considering in class have many applications,
for example in thermodynamics and heat transfer. In this lab we will consider the role
of improper integrals in probability, which also has many applications in science and
engineering.

Getting Started

To assist you, there is a worksheet associated with this lab that contains examples. You
can open this worksheet after you start up Maple by choosing Open... from the File
menu and then typing the following file name.

\\storage.wpi.edu\academics\math\calclab\MA1023\Probability_start.mw

You should read through the lab before you load this worksheet into Maple. Once you
have read to the exercises, start up Maple, load the worksheet Probability start.mw,
and go through it carefully by reading the text and running the commands. Then you
can start working on the exercises. Note that the worksheet is set up for you to enter your
answers directly on the worksheet, so the first thing you should do is save the worksheet
to your toaster directory.

Background

The first concept we need is that of a random variable. Intuitively, a random variable is
used to measure an outcome whose value is not certain. For example, the number of hours
that a hard disk can run before failing is a random variable because it is not the same
for every drive, even if we only consider identical drives from the same production run.
A few other examples of random variables that are important in science, engineering, or
manufacturing are given below.

e The time it takes for a packet of information to travel from one location to another
on the Internet.

e The number of miles that an automobile tire can be driven before it fails.

e The lengths of supposedly identical bolts manufactured by a particular production
line.

e The speed of a particular gas molecule in a sample of a gas.

You may be more familiar with what are called discrete random variables, for example
the number of heads obtained in ten tosses of a coin, which can only take a finite number
of discrete values. In the case of a discrete random variable, the probability of a single
outcome can be positive. For example, the probability that a single flip of a coin produces



tails is 50%. The situation is very different when we consider a random variable like the
number of miles a tire can be driven before failure, which can take any value from zero to
something over 100, 000 miles. Since there are an infinite number of possible outcomes,
the probability that the tire fails at exactly some number of miles, for example 50, 000
miles, is zero. However, we would expect that the probability that the tire would fail
between 40,000 miles and 100,000 miles would not be zero, but would be a positive
number.

A random variable that can take on a continuous range of values is called a continuous
random variable. There turn out to be lots of applications of continuous random variables
in science, engineering, and business, so a lot of effort has gone into devising mathematical
models. These mathematical models are all based on the following definition.

Definition 1 We say that a random variable X is continuous if there is a function f(x),
called the probability density function, such that

1. f(z) >0, for all x
2. [Z flx)dx =1

3. Pla < X <b) = [ f(z)dx where P(a < X <b) represents the probability that the
random variable X is greater than or equal to a but less than or equal to b.

For example, consider the following function.

e x>0
flz) = { 0 otherwise

This function is non-negative, and also satisfies the second condition, since

/OO f(x)dx:/ooe_wdle

—0o0 0

which is pretty easy to show. So this could be a probability density function for a
continuous random variable X.

A lot of the effort involved in modeling a random process, that is, a process whose
outcome is a random variable, is in finding a suitable probability density function. Over
the years, lots of different functions have been proposed and used. One thing that they
all have in common, though, is that they depend on parameters. For example, the general
exponential probability density function is defined as

fe* ifr >0
_ ) e if x>
f(z) { 0 otherwise

where A is a parameter that can be adjusted to get the best fit to any particular situation.

The process of deciding what probability density function to use and how to determine
the parameters is very complicated and can involve very sophisticated mathematics.
However, in the simple approach we are taking here, the problem of determining the
parameter value(s) often depends on quantities that can be determined experimentally,
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for example by collecting data on tire failure. For our purposes, the two most important
quantities are the mean, p and the standard deviation o. The mean is defined by

u:/_o:oxf(x)dx

and the standard deviation is the square root of the variance, V', which is defined by
V = / x — (x) dz

The simplest way to calculate the variance is by expanding the factor of (z — u)? =
2% — 2ux + p? and splitting up the integral as follows

V:/O:Oxzf(x :E—2H/ d.iE—{—u/

Next, we use the definition of p and the definition of a probability density function to
obtain

V:/_OO 2 f(x) dx — 2u® + pi?

Finally, we combine the last two terms and obtain

V= / 2)de —

Probably the most important distribution is the normal distribution, widely referred to
as the bell-shaped curve. The probability density function for a normal distribution with
mean 4 and standard deviation o is given by the following equation.

1 _le= u)Q
fz) = —=e , for —oo <z < o0

This distribution has a tremendous number of applications in science, engineering, and
business. The exercises provide a few simple ones.

In applications, one generally has to know in advance that the random variable you
want to model folows a certain kind of distribution, at least approximately. How one
would determine this is way beyond the scope of this course, so we won’t really discuss
it. On the other hand, once you know, for example, that your random variable has a
normal distribution you only need the values of the mean and the standard deviation
to be able to model it. The exponential distribution is even simpler, since it only has
one parameter, and you only need to know the mean of your random variable to use this
distribution to model it.

One thing to keep in mind when you are using the normal distribution as a model
is that calculations can involve values of your random variable that don’t make physical
sense. For example, suppose that a machining operation produces steel shafts whose
diameters have a normal distribution, with a mean of 1.005 inches and a standard devia-
tion of 0.01 inch. If you were asked to compute the percentage of the shafts in a certain
production run that had diameters less than 0.9 inches you would use the following

integral
0.9 1 _ (z—1.005)2
/ e 00002
—o0 0.01v27

even though negative values for the shaft diameters don’t make physical sense.
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Exercises

1. Show that the probability density function given for the exponential distribution,

fx) = { %e’m/)‘ ifz>0

0 otherwise

satisfies the condition

/OO flz)dx =1

—00

as long as A is a positive number.

2. Show that the mean and the standard deviation of the exponential distribution are
both equal to A.

3. The amount of raw sugar that a sugar refinery can process in one day can be mod-
eled as an exponential distribution with a mean of 12 tons. What is the probability
that the refinery will process more than 10 tons in a single day?

4. Suppose that the length of time it takes for a laboratory rat to traverse a certain
maze follows an exponential distribution with a mean of 3 minutes. Find the
probability that a randomly selected rat will take between 2 and 4 minutes to
traverse the maze.

5. Suppose that the winning bids (in dollars) for vintage Barbie Thermoses and Lunch-
boxes for completed auctions on eBay approximately follow a normal distribution
with ;4 = 40 and o = 14. Using the distribution, estimate the fraction of winning
bids that are higher than $48.

6. The scores on the first exam in MA 1023 in a previous year approximately followed
a normal distribution with a mean of 68.6 and a standard deviation of 21.7.

(a) Approximate the percentage of student scores that lie in the range from 60 to
89.

(b) Approximate the percentage of student scores that were below 60.



