The purpose of this lab is to use Maple to introduce you to the notion of improper integral and to give you practice with this concept by using it to prove convergence or divergence of integrals involving unbounded integrands or unbounded intervals or both.

We start with the following definition.

is improper if one or both of the following conditions is satisfied.

- The interval of integration is unbounded.
- The function has an infinite discontinuity at some point in . That is, .

To see how to handle the problem of an unbounded integrand, we start with the following special cases.

provided that the limit on the right-hand side exists and is finite, in which case we say the integral converges and is equal to the value of the limit. If the limit is infinite or doesn't exist, we say the integral diverges or fails to exist and we cannot compute it.

provided that the limit on the right-hand side exists and is finite, in which case we say the integral converges and is equal to the value of the limit. If the limit is infinite or doesn't exist, we say the integral diverges or fails to exist and we cannot compute it.

Cases where has an infinite discontinuity only at an interior
point are handled by writing

and using the definitions to see if the integrals on the right-hand side exist. If

> ex1 := int(1/x,x=a..2);

> limit(ex1,a=0,right);The example above used the

> int(1/x,x=0..2);

These are handled in a similar fashion by using limits. The definition we need the most is given below.

provided the limit on the right-hand side exists and is finite, in which case we say the integral converges and and is equal to the value of the limit. If the limit is infinite or fails to exist we say the integral diverges or fails to exist.

The other two cases are handled similarly. You are asked to provide suitable definitions for them in one of the exercises.

> ex2:=int(1/x^2,x=2..a); > limit(ex2,a=infinity);This command shows that Maple takes the limit definition into account in the

> int(1/x^2,x=2..infinity);

- The gamma function is an example of an improper integral often used to approximate non-integer factorials and is defined below:

Evaluate by calculating the improper integral for and for each integer value of , check your answer by calculating . - Both of the following improper integrals given below do not exist. Show, by calculating a limit, why they do not exist.
- A
- , interval .
- B
- , interval .

- Plot and on a single graph.Recall from Calculus II that the volume of a solid of revolution formed by rotating about the -axis over the interval is

. Find the volume of the solid obtained by revolving the curve about the -axis, between and . Repeat this using .

2010-10-25