## L'Hopital's Rule

## Introduction

Maple and L'Hopital's Rule can be used to find the limit of functions in the indeterminate forms of $\frac{0}{0}$ and sometimes $\frac{\infty}{\infty}, \infty 0, \infty-\infty, 0^{0}$ and $1^{\infty}$
$>\operatorname{limit}\left(\left(\ln (x-3) /\left(x^{\wedge} 2-16\right), x=4\right)\right.$;
$>\operatorname{plot}\left(\left(\ln (x-3) /\left(x^{\wedge} 2-16\right), x=1 . .6\right)\right.$
Looking more closely at the limit we see that the numerator and denominator are both zero thus giving the indeterminate form of $\frac{0}{0}$

```
>limit(ln(x-3),x=4);
>limit(x^2-16, x=4);
```

Applying L'Hopital's Rule, the derivative of the numerator and denominator are taken.

```
>top := diff(ln(x-3), x);
>bottom := diff(x^2-16, x);
>simplify(top/bottom);
```

Now take the limit of the new numerator and denominator and the answer is found.

```
>limit(1, x = 4);
>limit((2*(x-3))*x, x = 4);
```

the value of the limit is $\frac{1}{8}$.

## Exercises

1. For $y=(1+x)^{\frac{1}{x}}$

A Find the limit at $x=0$ and then plot the equation on the domain $-2 \leq x \leq 10$ and the range $0 \leq x \leq 40$
B Find the limit of the base and the exponent individually. Then state the indeterminate form.
C Taking the natural $\log$ of both sides gives you $\ln (y)=\ln (1+x)^{\frac{1}{x}}$ which can be rewritten as the product (enter it)
D Take the limit of the numerator and the denominator individually. Then state the indeterminate form.
E Apply L'Hopital's rule and simplify your new quotient.
F Take the limit of the numerator and the denominator individually.
G The natural $\log$ was taken to work with the function so it must be undone by using e. Since $\lim _{x \rightarrow 0} \ln (y)=$ (youranswer) then $\lim _{x \rightarrow 0} y=e^{(\text {youranswer })}$. State the answer to the limit.
2. For $y=\frac{\ln (1-x)}{\cot (\pi x)}$

A Find the limit at $x=1$ from the left and then plot the equation on the domain $0 \leq x \leq 1$ and the range $-5 \leq x \leq 5$
B Take the limit of the numerator and the denominator individually. Then state the indeterminate form.
C Apply L'Hopital's rule and simplify the new fraction.
D Take the limit of the numerator and the denominator individually. Then state the indeterminate form.
E Apply L'Hopital's rule and simplify the new fraction.
F Take the limit of each factor and state the answer to the limit
3. Create your own indeterminate limit. Show the steps to solve it.

