
Geometric series and effective medicine dosage

Introduction

This lab concerns a model for a drug being given to a patient at regular intervals. As
the drug is broken down by the body, its concentration in the bloodstream decreases.
However, it doesn’t disappear completely before the next dose is given. This means that
there is a tendency for the average drug concentration to increase over time. It turns out
that a geometric series is the key to understanding how high the concentration can go.

Getting Started

To assist you, there is a worksheet associated with this lab that contains examples and
even solutions to some of the exercises. You can open this worksheet after you start up
Maple by choosing Open... from the File menu and then typing the following file name.

\\storage\academics\math\calclab\MA1023\Drug_start.mw

You should read through the lab before you load this worksheet into Maple. Once
you have read to the exercises, start up Maple, load the worksheet Drug start.mw, and
go through it carefully by reading the text and running the commands. Then you can
start working on the exercises.

Background

Exponential decay and effective medicine dosage

In this section, we describe an exponential decay model for the concentration of a drug
in a patient’s bloodstream. We assume that the drug is administered intravenously, so
that the concentration of the drug in the bloodstream jumps almost immediately to its
highest level. The concentration of the drug then decays exponentially. If we use C(t)
to represent the concentration at time t, and C0 to represent the concentration just after
the first dose is administered then our exponential decay model would be given by

C(t) = C0e
−kt

where k is the decay constant, and is a property of the particular drug being used. It is
usually obtained experimentally. The worksheet Drug start.mws has examples of how
to compute k from experimental data.

Now suppose that an additional dose of the drug is given to the patient. Since we
are assuming that when the drug is administered it is diffused so rapidly throughout
the bloodstream that, for all practical purposes, it reaches its highest concentration
instantaneously, we would see a jump in the concentration of the drug when the new
dose is given, as shown in the graph below.
After the additional dose is given, the concentration again decays over time.
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A problem facing physicians is the fact that for most drugs, there is a concentration,
m, below which the drug is ineffective and a concentration, M , above which the drug is
dangerous. Thus the physician would like the have the concentration C(t) satisfy

m ≤ C(t) ≤ M

This requirement helps determine the initial dose of a drug and when the next dose
should be administered. For example, the first dose should never raise the concentration
above M . That is, we must have C0 ≤ M . To get a handle on the time between doses,
we can calculate the maximum possible time between doses. That is, suppose an initial
dose is given such that the concentration immediately after the dose is M , the maximum
safe dose. If we calculate the time at which the concentration has decayed to m, then
this gives the maximum time interval between doses. This gives us an upper bound on
the time between doses. The worksheet contains examples of this kind of calculation.
Note that many factors could be important in determining the time between doses that is
actually used, including practical considerations like hospital schedules and shift changes.

Equal, regularly-spaced doses

We next consider what happens if equal doses of the drug are given at regular time
intervals. Recall that a drug has a maximum safe concentration, M , and a minimum
effective concentration, m. We say that a treatment program of equal, regularly-spaced
doses is safe and effective if the concentration C(t) of the drug satisfies

m ≤ C(t) ≤ M

during the treatment.
In the first part of this lab, we presented the expression

C(t) = C0e
−kt

for the concentration of the drug after the first dose. This expression is valid as long as
only a single dose is given. However, suppose that at t = L a second dose is given and
that the amount of the drug administered is the same as the first dose. According to
our model, the concentration will jump immediately by an amount equal to C0 when the
second dose is given. However, when the second dose is given, there is still some of the
drug in the bloodstream remaining from the first dose. This means that to compute the
concentration just after the second dose, we have to add the value C0 to the concentration
remaining from the first dose. During the time between the second and third doses, the
concentration decays exponentially from this value. To find the concentration after the
third dose, we would have to repeat this process, but now we have contributions from
the first and second doses to include.

We can calculate the concentration just before the second dose is administered by
setting t = L in our equation

C(t) = C0e
−kt

to get
C(L−) = C0e

−kL
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where by C(L−) we mean the
lim
t→L−

C(t)

Now, when the second dose is administered the concentration jumps by an increment C0

so that the concentration just after the second dose is given is

C0 + C(L−) = C0 + C0e
−kL = C0(1 + e−kL)

The concentration then decays from this value according to our exponential decay rule,
but with a slight twist. The twist is that the “initial” concentration is at t = L, instead
of the more familiar case of t = 0. One way to handle this is to write the exponential
term as

e−k(t−L)

so that at t = L, the exponent is 0. If we do this, then we can write the concentration
as a function of time as

C(t) = C0(1 + e−kL)e−k(t−L)

This function is only valid after the second dose is administered and before the third dose
is given. That is, for L ≤ t < 2L.

Now, suppose that a third dose of the drug is given at t = 2L. The concentration
just before the third dose is given is C(2L−), which is

C(2L−) = C0(1 + e−kL)e−kL

which we can also write as

C(2L−) = C0(e
−kL + e−2kL)

When the third dose is given, the concentration would jump again by C0 and the con-
centration just after the third dose would be

C(2L) = C0(1 + e−kL + e−2kL)

This process can be continued and leads to the following two formulas. The first is
the concentration just before the Nth dose of the drug. This is

C((N − 1)L−) = C0

N−1∑
i=1

e−ikL

The second result we need is the concentration just after the Nth dose, which is

C((N − 1)L) = C0

N−1∑
i=0

e−ikL
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Geometric series

At this point, you are probably wondering how geometric series fit into this lab. The
answer should be a lot clearer if we define a parameter r by

r = e−kL

Note that 0 < r < 1, since k and L are both positive constants. The properties of the
exponential function can be used to show that

ri = e−ikL

where i is a non-negative integer. We can write our two formulas for the concentration
just before and after the Nth dose in terms of r as

C((N − 1)L−) = C0

N−1∑
i=1

ri = C0
r − rN

1− r

and

C((N − 1)L) = C0

N−1∑
i=0

ri = C0
1− rN

1− r

where the formula for the partial sum of a geometric series has been used to obtain the
last equality in each of the equations above.

Now, suppose a treatment program is to be continued indefinitely. The formulas
above show that C((N −1)L−) and C((N −1)L) both increase with N . This means that
the minimum concentration is the concentration just before the second dose or

Cmin = C0r

and that the maximum concentration occurs just after the last dose. Thus we have that

Cmax ≤ lim
N→∞

C0
1− rN

1− r
=

C0

1− r

Exercises

1. Suppose that for a certain drug, which we’ll refer to as drug A, the following results
were obtained. Immediately after the drug was administered, the concentration
was 6.2 mg/ml. Four hours later, the concentration had dropped to 3.4 mg/ml.
Determine the value of k for this drug.

2. Suppose that for drug A, the maximum safe level is M = 12 mg/ml and the mini-
mum effective level ism = 2.8 mg/ml. What is the maximum possible time between
doses for this drug?

3. Consider drug A, assuming that doses are given every six hours, or L = 6. Compute
the minimum initial dose C0 that will keep the concentration above the minimum
effective level for the first six hours, i.e before the second dose is given.
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4. Consider drug A again, with doses to be given every six hours. Can you find a dose
C0 such that the concentration stays below M = 12 and above m = 2.8 for at least
72 hours?

5. Trials of another drug, which we’ll call drug B, produced the following data. The
concentration just after the drug was administered was 8.5 mg/ml and 4 hours later
the concentration was 4.1 mg/ml. Find the value of k for this drug and label it k2
in your worksheet.

6. Suppose that for drug B, the maximum safe concentration is 11 mg/ml and the
minimum effective concentration is 2.2 mg/ml. Assuming that doses are to be
given every 3 hours, find a value of C0 such that the concentration stays below
M = 11 and above m = 2.2 for at least 72 hours.

7. If the time between doses of drug B is changed to 7 hours, find a value of C0 such
that the concentration stays below M = 11 and above m = 2.2 for at least 72
hours. Which treatment program for drug B do you think is better for the patient?
Explain your answer.
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