TOPICS

- More Approximation
 - \hookrightarrow Taylor Polynomials
 - \hookrightarrow Estimating Error
- Re-Quiz #1-B
 - \hookrightarrow L'Hopital's Rule

Lecture #5: (03/27/2000)

2

Remember?

You can almost always approximate a function with a polynomial.

The basic idea:

Pick the constants in the polynomial so that you match the function value and as many derivatives as you want...

.....at a fixed point.

Start with an Example:

From Last Time...

$$\cos(\theta) \approx 1 - \frac{1}{2}\theta^2 + \frac{1}{24}\theta^4$$

How much error do you make if you use the polynomial to ...

- approximate cos(1)? $cos(1) \approx 13/24$?
- approximate $\int_0^1 \cos(\theta) d\theta$?

How does your calculator compute cos anyway?

Lecture #5: (03/27/2000)

4

Some Numbers:

$$\cos(\theta) \approx 1 - \frac{1}{2}\theta^2 + \frac{1}{24}\theta^4$$

θ	$\cos(heta)$	$P_4(heta)$	Error
0.0	1	1	0
0.2	0.9801	0.9801	8.9×10^{-6}
1.0	0.5403	0.5417	1.4×10^{-3}
2.0	-0.4164	-0.3333	8.2×10^{-2}
10.0	-0.8391	367.667	$3.7 \times 10^{+2}$

Main Question:

Can you estimate the error if you cannot compute the function?

Lecture #5: (03/27/2000)

6

Main Answer: YES

You can (almost) always estimate the error...

$$|\cos(heta)-P_4(heta)|=\left|rac{f^{(6)}(\zeta)}{6!}
ight| heta^6\leqrac{1}{6!} heta^6$$

where $0 \le \zeta \le \theta$

θ	Actual Error	Estimated Error
0.0	0	0
0.2	8.9×10^{-6}	8.9×10^{-6}
1.0	1.4×10^{-3}	1.4×10^{-3}
2.0	8.2×10^{-2}	8.92×10^{-2}
10.0	378	1,389

8

ASIDE

The cosine is a little strange...there are no odd terms!

Lecture #5: (03/27/2000)

MAIN MESSAGE:

$$f(x) = f(a) + f'(a) \cdot (x - a) + \frac{f''(a)}{2!} \cdot (x - a)^2 + R_2(x)$$

where

$$R_2(x) = \left|rac{f^{(3)}(\zeta)}{3!}
ight| heta^3$$

The error depends on the next term.

This is called "Taylor's Theorem with Remainder."

GENERAL CASE:

$$f(x) pprox f(a) + f'(a) \cdot (x-a) + rac{f''(a)}{2!} \cdot (x-a)^2 + rac{f'''(a)}{3!} \cdot (x-a)^3 + \dots + rac{f^{(n)}(a)}{n!} \cdot (x-a)^n$$

The error depends on the next term:

$$R_n(x) = \left| rac{f^{n+1}(\zeta)}{(n+1)!} \right| heta^{n+1}$$

You cannot compute this, but you can estimate it!

Lecture #5: (03/27/2000)

10

Example:

How many terms do you need in order to estimate cos(1) with an error of at most 0.0000001?

Answer:

Error
$$\leq \frac{1}{(n+1)!} 1^{n+1} = \frac{1}{(n+1)!} \leq 0.0000001$$

You need $(n+1)! \ge 10,000,000$

$$(n = 10 \text{ gives you } 11! = 39,916,800)$$

ANNOUNCEMENTS:

• Homework #3 Due Wednesday in Conference

Sec. 10.1: 7, 13, 25, 26

Sec. 10.2: 9, 17, 19

- Quiz #3: Thursday in Lecture (Improper Integrals)
- Evening Help Sessions:

Tuesday and Thursday, 7:00-9:00pm in SH106

• Section 4 "in the box" tomorrow