TOPICS

- More Solving Equations... Approximately
 - \hookrightarrow Newton's Error
 - \hookrightarrow Fixed Point Method
- Beginning Convergence
 - \hookrightarrow Sequences of Numbers

Lecture #8: (04/03/2000)

2

Recall NewtonPicture:	

Newton's Method

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Question:

How fast does the method converge?

Lecture #8: (04/03/2000)

4

Example:

Approximating $\sqrt{2}$ by solving $x_2 - 2 = 0$

You double the number of correct digits at each step.

Step	x_n	Correct Digits
0	3	0
1	1.183	1
2	1.4621	2
3	1.4149984	4
4	1.4142137800	7
∞	1.4142135623	**

Remark:

Recursion builds a sequence

$$x_0, x_1, x_2, \ldots x_n, x_{n+1}, \ldots$$

and you hope that

$$\lim_{n\to\infty} x_n = \sqrt{2}$$

Lecture #8: (04/03/2000)

6

Theorem:

Newton is always this fast.

$$\left|x_{n+1}-r\right| \leq \frac{M}{2m} \left(x_n-r\right)^2$$

where

$$f'(x) \ge m > 0$$
 and $\left| f''(x) \right| \le M$

and r is a root for f(x) = 0.

Justification: Taylor!

$$0 = f(r) = f(x_n) + f'(x_n)(r - x_n) + \frac{f''(c)}{2} \cdot (r - x_n)^2$$

Rearrange terms:

$$x_n - rac{f(x_n)}{f'(x_n)} - r = rac{f''(c)}{2f'(x_n)}(x_n - r)^2$$

Lecture #8: (04/03/2000)

Fixed Point Methods

Example: You can solve $cos(\theta) = \theta$ with one finger

- 1. Put your calculator in radian mode
- 2. start anywhere (call it θ_0)
- 3. Hit the cos key until you get tired

8

WHY Does it Work?

You are building a sequence

$$\theta_0, \theta_1, \theta_2, \dots \theta_n, \dots$$

and you hope that

$$\theta^* = \lim_{n \to \infty} \theta_n = \cos(\theta^*)$$

Awfully Optimistic!

Lecture #8: (04/03/2000)

10

Aside:

IF there is a limit, it has to be a fixed point:

$$\begin{array}{ccc} \theta_{n+1} & = & \cos(\theta_n) \\ \downarrow & & \downarrow \\ \theta^* & = & \cos(\theta^*) \end{array}$$

Here is Why:

Look at the difference:

$$\theta_{n+1} - \theta_n = f(\theta_n) - f(\theta_{n-1})$$

$$= f'(\zeta) \cdot (\theta_n - \theta_{n-1})$$

$$$$

IF the derivative is always less than p < 1.

Error always decreases: This is the Key!

Lecture #8: (04/03/2000)

12

Quick Summary:

- 1. Newton and Bisection will solve f(x) = 0
- 2. Fixed point method will solve f(x) = x
- 3. All methods are recursive (and easy to program).

New Stuff:

How do you PROVE that

$$\lim_{n\to\infty}\frac{1}{n^2}=0 ?$$

Intuition:

When n is big, $1/n^2$ is small.

Mathematics:

For any number $\epsilon > 0$, there exists a N > 0 such that

$$n>N \quad ext{ guarantees } \quad \left|rac{1}{n^2}-0
ight|<\epsilon$$

Lecture #8: (04/03/2000)

14

Definition of Convergence

Say that

$$\lim_{n \to \infty} a_n = L$$

if for any number $\epsilon > 0$, there exists a N > 0 such that

$$|a_n - L| < \epsilon$$
 whenever $n > N$.

Apply the Definition

$$\lim_{n\to\infty}\frac{1}{n^2}=0$$

Find a formula for N in terms of ϵ .

Lecture #8: (04/03/2000)

16

Example:

Does $a_n = 2 + (0.99)^n$ converge?

18

Two Key Limits:

#1:
$$\lim_{n \to \infty} \frac{1}{n} = 0$$

#2:
$$\lim_{n \to \infty} p^n = 0$$
 if and only if -1

Lecture #8: (04/03/2000)

Many Key Theorems

ANNOUNCEMENTS:

• Homework #4 Due Tomorrow in Lecture

Sec. 10.3: 7, 10, 13, 17;

Sec. 10.4: 8, 15, 18, 19

- Quiz #4: Tomorrow in Lecture: Solving Equations
- Make-up for ALL Quizzes: Friday (Sign up Wednesday)

2:00, 2:30, 3:00, 3:30 in Stratton Hall 106