TOPICS

- More Convergence
 - \hookrightarrow Sequences of Numbers
- Infinite Series
 - \hookrightarrow Geometric First

Lecture #9: (04/04/2000)

2

Example from Lab 2:

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} + \dots = ???$$

Picture it:

Geometric Series:

$$\sum_{n=0}^{\infty} r^n = 1 + r + r^2 + r^3 + \cdots$$

You can give a simple formula for the sum:

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$$

Lecture #9: (04/04/2000)

4

Derive the Formula:

Truncate:

$$S_N := \sum_{n=0}^{N} r^n = 1 + r + r^2 + r^3 + \cdots + r^N$$

Evaluate the Truncated Sum:

$$S_N = 1 + r + r^2 + r^3 + \cdots r^N$$

 $r \cdot S_N = r + r^2 + r^3 + r^4 + \cdots r^{N+1}$

Keep Going:

Compute the Limit:

$$\sum_{n=0}^{\infty} r^n = \lim_{N \to \infty} S_N = \lim_{N \to \infty} \frac{1 - r^{N+1}}{1 - r} = ???$$

Lecture #9: (04/04/2000)

6

Quick Summary:

- 1. A Sequence is a LIST of numbers
- 2. A Series is a SUM of numbers
- 3. Geometric Series are your friend.

Definition of Convergence

Say that

$$\lim_{n\to\infty} a_n = L$$

if for any number $\epsilon > 0$, there exists a N > 0 such that

$$\left|a_n - L\right| < \epsilon$$
 whenever $n > N$.

Lecture #9: (04/04/2000)

8

Apply the Definition:

If -1 < r < 1, then

$$\lim_{n\to\infty}r^n=0$$

Find a formula for N in terms of ϵ .

$$\left|r^{N}-0\right|=\left|r\right|^{N}<\epsilon$$

if and only if

$$N\ln(|r|) < \ln(\epsilon) \Longleftrightarrow N > \frac{\ln(\epsilon)}{\ln(|r|)}$$

Summary:

Given $\epsilon > 0$, define N by

$$N > rac{\ln(\epsilon)}{\ln(|r|)}$$

and you have what you need.

Numbers:

$$r=0.6 \quad ext{ and } \quad \epsilon=0.001 \Longrightarrow N > rac{\ln(0.001)}{\ln(0.6)} pprox 2.455$$

Lecture #9: (04/04/2000)

10

Time For Quiz #4:

Any Questions?

ANNOUNCEMENTS:

• Homework #5 Due Friday in Conference

Section 11.1: 15, 16, 37, 39

Section 11.2: 23, 24, 25, 41

• Make-up for ALL Quizzes: Friday (Sign up Wednesday)

2:00, 2:30, 3:00, 3:30

in Stratton Hall 106