The purpose of this lab is to give you practice with parametrizing curves in the plane and in visualizing parametric curves as representing motion.
cp ~bfarr/Parametric_start.mws ~
You can copy the worksheet now, but you should read through the lab before you load it into Maple. Once you have read to the exercises, start up Maple, load the worksheet Parametric_start.mws, and go through it carefully. Then you can start working on the exercises
A parametric curve in the plane can be defined as an ordered
pair, , of functions, with
representing the
coordinate and
the
coordinate. Parametric curves arise
naturally as the solutions of differential equations and often
represent the motion of a particle or a mechanical system. They
also often arise in studying oscillations in electrical circuits.
For example, neglecting air resistance, the position of a projectile
fired from the origin at an initial speed of
and angle of inclination
is given by the parametric
equations
Graphically, a parametric curve can be represented several ways. One simple
way is to plot the component functions, and
,
individually versus the independent variable
. Another way is to
plot the set of points
.
This gives you the curve along which the particle moves, but
information on how it moves has been lost. On the other hand, plotting
the component functions individually makes it hard to see how the
particle is actually moving.
To help you to visualize parametric curves as representing motion, a Maple routine called ParamPlot has been written. It uses the Maple animate command to actually show the particle moving along its trajectory. You actually used this command last term for the lab on polar coordinates. Examples are in the Getting Started worksheet.
By restricting to an interval
, you can get a parametric
description of a portion of the curve. For example, the right half of
the parabola
would result from
for
.
More complicated parametrizations of can be obtained with
parametric curves of the form
. By choosing
appropriately, for example, you can make the particle stop and turn back on the
curve. For example, suppose that the curve to be parametrized is the
graph of the function
. The following examples give three
different parametrizations of parts of this curve.