WPI Logo



MA1024 A   CALCULUS IV   B09 - FEHRIBACH

Summary

I.   Multivariable Functions (f : (x,y) → R,   F : (x,y,z) → R)
A.Graphs, Contours (level curves, level surfaces)
B.Limits & Continuity
1.Definitions (delta-epsilon, distance, uniqueness)
2.Computing/Showing Nonexistence (simplify, polar coordinates, substitution, differing paths)
C.Differentiation
1.Partial Derivatives (definition, computing, interpretation: slope of tangent line, rate of change)
2.Tangent Planes (unique tangent planes, approximations)
3.Tangent Plane ⇔ Differentiable ⇔ Smooth
4.Jacobian Matrix, Jacobian Determinant
5.Basic Rules (linearity, product)
6.Implicit Partial Differentiation, Implicit Function Theorem
7.Higher-Order & Mixed Partial Derivatives
D.Multivariable Chain Rule
E.Directional Derivatives
F.Gradient
1.Definition of Gradient
2. Interpretations (direction of most rapid increase, normal vector)
G.Extrema (local & absolute maximum & minimum, pringle (saddle) points)

II.   3-D Basics
A. Coordinate Systems (right-handed, Cartesian, cylinderical, spherical)
B.Distance
C.3-D Graphics
D.Vectors in 3-D
1.Length
2.Dot Product (definition, cos representation, dot product equals zero implies perpendicular)
3.Cross Product (definition, sin representation, cross product equals zero implies parallel)
III.   Vector Functions (definitions:   r:   t --> Rn )
A.Vector Differentiation and Integration (linearity, scalar multiplication, products rules, chain rule)
1. Definition of r′(t)
2. Interpretation of r′(t)
B.Lines
C. Particle Motion: velocity, acceleration, (tangential vector, T(t), arc length, s(t), speed, s′(t) = ||r′(t)|| = ||v(t)|| , v(t) = s′(t)T(t) )

IV.   Multiple Riemann Integrals (double and triple integrals)
A.Definition (Riemann Sums)
B.Iterated Integrals (Fubini theorem)
C.Double Integrals (area, volume, mass, center of mass)
D.Integration in Polar Coordinates (change of variables, Jacobian determinant)
E.Triple Integrals (volume, mass, center of mass)
F.Integration in Cylindrical and Spherical Coordinates (change of variables, Jacobian determinant)

Written by: JDF (E-Mail: bach@wpi.edu)
Last Updated: Tuesday, 15 December 2009
Copyright 2007, 2009, Joseph D. Fehribach