Final A Term, 2013

This is a closed book/notes test. Show all work needed to reach your answers.

- 1. (20 points) For each of the following series, please determine whether the series converges absolutely, converges conditionally or diverges, and please name any test/series that you use. If possible, please give the exact value of the series.
- (a) $\sum_{k=1}^{\infty} \frac{(-1)^k}{k+1}$ This is an alternating series with $a_k > 0$, so this series converges. But the canvergence is conditional (not absolute) since $\sum_{k=1}^{\infty} \frac{1}{k+1}$ diverges by the limit comparison test with the harmonic series.
 - (b) $\sum_{k=0}^{\infty} \left(\frac{e}{\pi}\right)^k = \frac{1}{1-(e/\pi)} = \frac{\pi}{\pi-e}$ because this is a geometric experies and $\frac{e+2}{\pi} < 1$. Since all the terms are positive, this series is absolutely convergent.
- 2. (10 points) For the power series $\sum_{k=0}^{\infty} a_k x^k$, if $\lim_{k\to\infty} \frac{a_{k+1}}{a_k} = L$ for some $L \in (0, +\infty)$, please describe the interval of convergence for this series. Where is the series uniformly convergent?

Signature (att)

Signature (att)

Signature (att)

Signature (att)

Signature (att)

Signature (att)

For $|x| > \frac{1}{L}$ (nothing can be said in general about $|x| = \frac{1}{L}$).

Given any E > 0 Signature (att)

Signature (a

3. (30 points) Please find the Taylor series with a=0 for each function; you may use the known series for common functions.

(a)
$$f(x) = \cos(x^3)$$

$$Result: \cos(u) = \sum_{K=0}^{\infty} \frac{(-1)^K}{(2K)!} u^{2K}$$

$$\forall u \in R$$

Taylor Series:
$$f(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} \times 6k$$

(b)
$$g(x) = \int_0^x \frac{dt}{1 - t^5}$$

Recall: $\frac{1}{1 - u} = \sum_{k=0}^\infty u^k$

When $|u| < 1$ $+4$

So
$$g(x) = \int_{K=0}^{\infty} \frac{1}{2} \int_{K=0}^{\infty} t^{5k} dt$$

$$= \sum_{k=0}^{\infty} \int_{0}^{\infty} t^{5k} dt = \sum_{k=0}^{\infty} \frac{1}{5k+1}$$
provided that $1 \times 1 < 1$

(c)
$$h(x) = \frac{x^3}{e^x} = xe^{-x}$$

Recall: $e^{-x} = \frac{x^3}{e^x} = xe^{-x}$

Taylor Series:
$$g(x) = \sum_{K=0}^{\infty} \frac{x^{5K+1}}{5k+1}$$

So $h(x) = x^{3} \sum_{K=0}^{\infty} \frac{(-x)^{K}}{K!} = \sum_{K=0}^{12} \frac{(-1)^{K} x^{K+3}}{K!}$
 $= \sum_{N=3}^{\infty} \frac{(-1)^{N} x^{N}}{(N-3)!}$ either

 $x = x^{N-3}$

Taylor Series:
$$h(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{k+3}}{k!}$$

4. (8 points) Please give an example of a sequence of functions f_n defined on [0, 1] which converges pointwise to $f(x) \equiv 0$, but is *not* uniformly convergent.

Example 1
$$f_n(x) = \begin{cases} x^n & x \in [0,1) \\ 0 & x = 1 \end{cases}$$

Example 2
$$f_n(x) = n \times e^{-n \times^2}$$
(example from class).

Many other examples are also possible.

5. (12 points) Please complete the proof of the following theorem: THEOREM: Suppose that $\forall n \in \mathbb{Z}^+, a_n \in \mathbb{R}$. Suppose also that $a_n \to L$ for some $L \in \mathbb{R}$. Then the value of L is unique.

PROOF: Suppose that there are two limits, L_1 and L_2 . Given e>0, since $a_n \to L_1$, $\exists N_1 \in \mathbb{Z}^+$ such that $\begin{vmatrix} a_n - L_1 \end{vmatrix} < \epsilon/2$ $\forall N \nearrow N_1$. In addition, since $a_n \to L_2$, $\exists N_2 \in \mathbb{Z}^+$ such that $\begin{vmatrix} a_n - L_2 \end{vmatrix} < \epsilon/2$ $\forall N \nearrow N_2$. Let $N := \max\{N_1, N_2\}$. Then $|L_1 - L_2| \le |L_1 - a_n| + |a_n - L_2| < \epsilon/2 + \epsilon/2 = \epsilon$ $\forall N \nearrow N_2$. Since $|L_1 - L_2| < \epsilon$ $\forall \epsilon > 0$ (ϵ is $|L_1 - L_2| < \epsilon$). QED

6. (10 points) If a sequence $\{a_n\}$ converges to some limit L, please show that every subsequence of this sequence also converges to L.

Since $a_n \to L$, given E > 0, $\exists N \in \mathbb{Z}^+$ such that $|a_n - L| < E \ \forall n > N$. Suppose $\& a_n \ 3$ is $\& a_n = 1$ subsequence of $\& a_n \ 3$; then $\forall k \in \mathbb{Z}^+$ $n_k > k$.

Subsequence of $\& a_n \ 3$; then $\forall k \in \mathbb{Z}^+$ $n_k > k$.

So for k > N, also $n_k > N$, implying $|a_{n_k} - L| < E$ Thus $a_n \to L$ too. $Q \in D$

7. (10 points) Please explain why $\int_1^\infty \frac{\ln x}{x^2 + x} dx$ converges.

Approach 1

Let $u = \ln x \Rightarrow du = \frac{dx}{x}$ $\Rightarrow x = e^{u}$

So $\int_{-\infty}^{\infty} \frac{\ln x}{x^{2} + x} dx = \int_{-\infty}^{\infty} \frac{u}{e^{u} + 1} du = \lim_{b \to +\infty} \int_{-\infty}^{b} \frac{u}{e^{u} + 1} du = \lim_{b \to +\infty} \int_{-\infty}^{b} \frac{u}{e^{u}} du = \lim_{b \to +\infty} \int_{-\infty}^{\infty} \frac{u}{e^{u}} du = \lim_{b \to +\infty} \int_{-\infty}^{\infty}$

Approach 2