MA143X Theoretical Calculus III Name: S pAa]llms

Final A Term, 2013
This is a closed book/notes test. Show all work needed to reach your answers.

1. (20 points) For each of the following series, please determine whether the series con-
verges absolutely, converges conditionally or diverges, and please name any test/series
that you use. If possible, please give the exact value of the series.
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2. (10 points) For the power series E az®, if Jim = L for some L € (0, 400),
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please describe the interval of convergence for this series. Where is the series uni-

formly convergent? Qﬂ
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3. (30 points) Please find the Taylor series with a = 0 for each function; you may use
the known series for common functions.
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4. (8 points) Please give an example of a sequence of functions f,, defined on [0, 1] which
converges pointwise to f(z) = 0, but is not uniformly convergent.
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5. (12 points) Please complete the proof of the following theorem:

THEOREM: Suppose that Vn € Z*, a,, € R. Suppose also that a, — L for some
L € R. Then the value of L is unique.

PROOF: Suppose that there are two limits, L; and Ly. Given €% 0
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6. (10 points) If a sequence {a,} converges to some limit L, please show that every

subsequence of this sequence also converges to L. 7
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7. (10 points) Please explain why / b xin $$ dx converges.
/%fm{ {
Joi ws lwse o dhon B
&> x=e“
Q) b b
! ' B .
aolnx Wu % = lin j :_Qg_‘_ é l.mwj _“:1 ::_6}-’*0 J’UO
fﬁ"hz &%\ = ptw | 2%l ¢ @

o 0 . "
T h (e ) = s [

= a0 9



