Quiz 4

B Term, 2013

Show all work needed to reach your answers.

1. (10 points) Please find the critical points of $f(x,y) = x^3 + 3xy - y^3$.

 $\overline{\nabla} f(x,y) = \langle 3x^2 + 3y | 3x - 3y^2 \rangle = \overline{\partial}$

Critical Point: (0, 6)

Critical Point: (/ -/)

Critical Point:

Critical Point:

2. (10 points) Please find an equation of the plane tangent to the surface z = f(x,y) = $x^3 + 3xy - y^3$ at (1, 1, 3).

 $\frac{\partial f}{\partial x}(1,1) = 3x - 3y^2 / 100$

 $\frac{\partial f}{\partial x}(1,1) = 3x^{2} + 3y \Big|_{(1,1)} = 6$ $Z = Z_{0} + \frac{\partial f}{\partial x}(x_{0}, y_{0}) (x - X_{0}) + \frac{\partial f}{\partial y}(x_{0}, y_{0}) (y - y_{0})$ = 3 + 6(x - 1) + 0(y - 1)3 + 6x - 6 = 6x - 3

Equation: $2 = 6 \times -3$ \iff $6 \times -2 = 3$

3. (5 points) If z = f(x,y), what limit must be zero if f is to be differentiable and have a unique tangent plane at (x_0, y_0) ? lim f(x, y) - [f(x, yo) + ox (xo, yo) (x-xo) + of (xo, yo) (Y-yo)]

al(&x). (xo. yo))