Show all work needed to reach your answers.

1. (10 points) Please find the unit tangent vector and the tangential component of acceleration

for $x(t) = \langle \cos t, \sin t, t \rangle \Rightarrow \overline{V}(t) = \overline{X}(t) = \langle -\sin t, \cos t, 1 \rangle$ and $\underline{S}'(t) = |\overline{V}(t)|$ $= \overline{V}(t)|_{t}^{2} + |\cos t|_{t}^{2} + |\cos t|_{t}^{2} = \overline{V}(t)|_{t}^{2} + |\cos t|_{t}^{2} + |\cos t|_{t}^{2} = \overline{V}(t)|_{t}^{2} + |\cos t|_{t}^{2} + |\cos$

Secondly a, (+) = 5"(t) = of (12) = 0

tangential component: $Q_{\mathbf{r}}(t) = O$

unit tangent vector: $\hat{T}(t) = \frac{2}{2} \langle -\sin t, \cos t, 1 \rangle$

2. (8 points) Suppose that a two-dimensional vector function x(t) smoothly traces out a curve C in the plane. In terms of x(t) and its derivatives, which vector is tangent to C at the point corresponding to $t = t_0$? Which vector is normal (perpendicular) to C at the point corresponding to $t = t_0$? Any tangent or normal vector (expressed in terms of x(t) and its derivatives) will do, and you may assume that all derivatives exist, and all denominators Since $\hat{T}(t) = \frac{\hat{x}'(t)}{|\hat{x}'(t)|}$, $|\hat{T}(t)| = 1$, $\hat{T}(t) \perp \hat{T}(t)$. are nonzero.

tangent vector:

3. (7 points) Please find the length of $(\ln \cos t, t)$ on the interval $[0, \frac{\pi}{3}]$.

sect sect + tout df = sect + tout alf $\int_{1}^{\infty} \frac{du}{u} \quad \text{where} \quad U = \sec t + \tan t$ $= \left| \ln \left(2 + \sqrt{3} \right) \right|$