Name: Solutions

Quiz 5

Show all work needed to reach your answers.

High: 20 Median: 17 Low: 7

D Term, 2015

1. (10 points) Your friend is a something-not-mathematics major, and tells you that it is possible to count the real numbers in [0,1] by writing them in binary form (so each number $x_j \in [0,1]$ is of the form $0.x_{j1}x_{j2}x_{j3}...$ where x_{jk} is either 0 or 1). Your friend gives the count as

 $x_1 = 0.x_{11}x_{12}x_{13}x_{14}...$ $x_2 = 0.x_{21}x_{22}x_{23}x_{24}...$ $x_3 = 0.x_{31}x_{32}x_{33}x_{34}...$ $x_4 = 0.x_{41}x_{42}x_{43}x_{44}...$ and so forth

2. (10 points) By the greatest lower bound property of \mathbb{R} (the real numbers), a decreasing sequence of real numbers that is bounded below must converge to a limit L which is also a real number. Does a decreasing sequence of rational numbers always converge to a rational number? Please give a counterexample to show that \mathbb{Q} (the rational numbers) has no such greatest lower bound property. Hint: Think about the examples we have discussed in class and the homework exercises.

Consider the sequence $\frac{2}{3}$, $\frac{1}{3}+\frac{1}{3}$, $\frac{1}{3}+\frac{1}{3}+\frac{1}{3}$, $\frac{1}{3}+\frac{1}{3}$, $\frac{1}{3}+\frac{1}{3}+\frac{1}{3}$, \frac