Exercise Set I

- 1. Please give an example of a predicate $\mathbf{A}(x)$ for which "For all $x \in \mathbb{R}$, $\mathbf{A}(x)$ " is true. Then give a separate example of a predicate $\mathbf{B}(x)$ for which "For all $x \in \mathbb{R}$, $\mathbf{B}(x)$ " is false, but "There exists $x \in \mathbb{R}$ such that $\mathbf{B}(x)$ " is true.
- 2. Please identify the hypotheses and conclusions in each implication. Then decide which statements are true and which are false.
 - a. For $x, y, z \in \mathbb{Z}^+$, if x + y is odd and y + z is odd, then x + z is odd.
 - b. If x is an integer, then $x^2 \ge x$.
 - c. For $x \in \mathbb{R}$, if $x^2 > 11$, then x is positive.
 - d. If f is a polynomial of odd degree, then f has at least one real root.
 - e. If x is an integer, then $x^3 \ge x$.
- 3. Create a truth table to verify that each of the following is a tautology.
 - a. $(A \land (A \Rightarrow B)) \Longrightarrow B$
 - b. $(A \Rightarrow (B \land C)) \Longrightarrow (A \Rightarrow B)$
 - c. $((A \Rightarrow B) \land (B \Rightarrow C)) \Longrightarrow (A \Rightarrow C)$
 - d. $(A \Rightarrow (B \lor C)) \iff ((A \land \neg B) \Rightarrow C)$
- 4. Construct a truth table to show that it is possible for $A \Rightarrow B$ to be true while its converse $B \Rightarrow A$ is false.
- 5. There are some useful rephrasings that involve negation. Construct a truth table to compare the truth values of the following four statements:

$$\neg(A \land B)$$
 $\neg A \land \neg B$ $\neg(A \lor B)$ $\neg A \lor \neg B$

Which pairs are equivalent?

- 6. Rephrase the statement "x is not greater than 7" in positive terms.
- 7. Negate the following predicates. Write each negation as positively as possible.
 - a. The roots of a polynomial P(x) are either all real or all genuinely complex numbers.
 - b. For $x \in \mathbb{R}$, both x < 0 and x is irrational.
 - c. For $x, y, z \in \mathbb{Z}^+$, both x + y and y + z are even.

- 8. Negate the following statements. Write each negation as positively as possible.
 - a. There exists an odd prime number.
 - b. For all real numbers $x, x^3 = x$.
 - c. Every positive integer is the sum of distinct powers of three.
 - d. There exists a positive real number y such that for all real numbers $x, y^2 = x$.
- 9. Negate the following statements. Write each negation as positively as possible. Which statements or true and which are false.
 - a. If x is an odd integer, then x^2 is an even integer.
 - b. If f is a continuous function, then f is a differentiable function.
 - c. If f is a differentiable function, then f is a continuous function.
 - d. If f is a polynomial with integer coefficients, then f has at least one real root.
- 10. Give counterexamples to the following false statements.
 - a. If a real number is greater than 5, then it is less than 10.
 - b. If x is a real number, then $x^3 = x$.
 - c. All prime numbers are odd numbers. What is the hypothesis here, and what is the conclusion?
- 11. Use a direct proof to show that "If x + y is even and y + z is even, then x + z is even."
- 12. Find the contrapositives of the following statements. Write things in positive terms whenever possible.
 - a. If x < 0, then $x^2 > 0$.
 - b. If $x \neq 0$, then there exists y for which xy = 1.
 - c. If x is an even integer, then x^2 is an even integer.
 - d. If x + y is odd and y + z is odd, then x + z is odd.
 - e. If f is a polynomial of odd degree, then f has at least one real root.
- 13. Let A, B, Q and P be statements. Construct a truth table to show that the following statements are equivalent:

Q and
$$(\neg Q) \Rightarrow (P \land \neg P)$$

14. Use proof by contradiction to show that "If x is an integer, then x cannot be both even and odd."