Exercise Set II

1. Let A and B be subsets of a universe U. Please prove the second De Morgan's law:

$$(A \cap B)^{^{\mathrm{c}}} = A^{^{\mathrm{c}}} \cup B^{^{\mathrm{c}}}$$

- 2. Prove that if A, B and C are sets, and if $A \subset B$ and $B \subset C$, then $A \subset C$.
- 3. If U := [0, 10], A := [3, 7) and $B := \{3, 6, 9\}$, then what are $A_U^c, A_{\mathbb{R}}^c$ and B_U^c ?
- 4. Let A and B be sets. Please prove or disprove:

$$\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$$

Hint: Counterexample

- 5. Prove that for each $n \in \mathbb{Z}^+$,
 - 1.

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

2.

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

- 6. Please find two distinct proofs that for any $n \in \mathbb{Z}^+$, then 6 divides $n^3 n$, that is, $6|(n^3 n)$.
- 7. Suppose A and B are sets with $A \subset B$. Given the standard definition of A_B^c , use the axioms to show that this complement exists.
- 8. In terms of axiomatic set theory, please explain why a "set" containing all sets is not a set.
- 9. Is \emptyset the same as $\{\emptyset\}$? Explain why or why not. Hint: Cardinality.
- 10. Please construct on the basis of the axioms a set containing exactly three elements.