Quiz 4

J affirm that I have not consulted my text, notes or any reference, paper or electronic, or any person once I opened and/or looked at this quiz.

Name:

Signature:

Show all work needed to reach your answers.

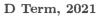
Consider the continued root

 $\sqrt{5} + \sqrt{5} + \sqrt{5} + \sqrt{5} + \sqrt{5}$

Median : low:

Solutions

1. (2 points) Which sequence is equivalent to this continued root?


{15, 15+15, 15+15, ... }

- 2. (3 points) Call this sequence $\{a_n\} = \{a_1, a_2, a_3, ...\}$ (just to give it and its terms a name). Please write Might be acceptable. down the recurrence formula giving a_{n+1} in terms of a_n . $a_{n+1} = \sqrt{5+a_n}$
- 3. (12 points) This sequence can be shown to be increasing, so to guarantee convergence, please use the

recurrence formula to show the sequence is bounded above. Hint: Induction. Let P(n) be the statement " $a_n \leq 4$ " $\textcircled{}^{n}$ [Could be used. Step 1: P(1) is True: 01= 15 < 19 = 3 < 4. Step 2 (Inductive Step): Suppose $a_n \leq 4$. Then by the recurrence formula, $a_{n+1} = \sqrt{5+a_n} \leq \sqrt{5+4} = 3 < 4$. Thus These last P(n) = P(n+1). (+4) details could Hence by induction, a_n is bounded above $\forall n$.

4. (8 points) Please compute the value of this continued root (the limit of the sequence).

Since the sequence converges, $a_n \rightarrow L$ and $a_{n+1} \rightarrow L^2$ so $L \stackrel{(+2)}{=} \sqrt{5+L} \rightarrow L^2 - L - 5 = 0 \iff L = \frac{\pm \sqrt{1+20}}{2}$ Since L > 0, $L = \frac{1}{2} + \frac{1}{2} \sim 2.8$

