MA 1971 Bridge to Higher Mathematics

I affirm that I have not consulted my text, notes or any reference, paper or electronic, or any person once I opened and/or looked at this quiz.

Signature:

Show all work needed to reach your answers.

1. (1 points)

2. (12 points) Please complete the following multiplication table for \mathbb{Z}_7 (multiplication mod 7).

\times	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2		4		6
2	0	2		6		3	5
3	0		6		5		4
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $	0	4		5	2	6	
5	0	5	$\frac{3}{5}$			4	2
6	0	$\frac{4}{5}$	5	4		2	1

 $\mathbb{N} =$

3. (12 points) Please complete the following proof that the prime numbers (ℙ) are *countably infinite*.
 Proof (Contradiction):

Suppose that the primes are finite, that is, suppose that $\mathbb{P} = \{p_1, p_2, ..., p_n\}$ for some finite $n \in \mathbb{Z}^+$.

Name:

Quiz 3

D Term, 2021