Quiz 1

ea

D Term, 2015

Show all work needed to reach your answers.

- 1. (8 points) Please identify each of the following as either a predicate (P), an implication (I), or a statement which is not an implication (S). For each implication, please circle the hypothesis and underline the conclusion.
 - (a) If x + y is odd and y + z is odd, then x + z is odd.
 - (b) Some functions are not continuous.
 - (c) \bot \triangle B \nearrow
 - (d) S The instructor picked all 16 games correctly on Thursday.
 - (e) When x = 2, one finds y = 5.

High	20
Median	17
Low	12

2. (10 points) Please complete the following truth table.

	5 N B									
	A	B	C	$A \lor C$	$\neg A$	$\neg(A \Rightarrow B)$	$(B \wedge (\neg C)) \vee A$	$(B \Rightarrow (A \lor C)) \Leftrightarrow ((C \lor (\overline{\smile} B)) \Rightarrow A)$		
ach	F	Т	Т	T	T	F	F	F		
	Т	Т	F	T	F	F	T	T		

3. (2 points) Please write $C \vee \neg B$ as an implication using $B \cap A \Rightarrow Symbol$.

Notice that $\neg (C \vee \neg B) \equiv \neg C \wedge B \equiv B \wedge \neg C \equiv \neg (B \Rightarrow C)$ So $(C \vee \neg B) \Leftrightarrow (B \Rightarrow C) \Leftrightarrow (\neg C \Rightarrow \neg B)$ OV.

Truth Table $C \mid B \mid C \mid C \mid B \mid B \Rightarrow C$ For $T \mid T \mid T$ $T \mid T \mid T \mid T$ For $T \mid T \mid T$