{VERSION 2 3 "IBM INTEL NT" "2.3" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "Hyperlink" -1 17 "" 0 1 0 128 128 1 0 0 1 0 0 0 0 0 0 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Heading 1" 0 3 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 1 0 0 0 0 0 0 0 }1 0 0 0 6 6 0 0 0 0 0 0 -1 0 }{PSTYLE "Heading 2" 3 4 1 {CSTYLE "" -1 -1 "" 1 14 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 4 4 0 0 0 0 0 0 -1 0 }} {SECT 0 {PARA 4 "" 0 "" {TEXT -1 28 "Examples for Lecture 19, C99" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 24 "filename: lecture19.mws" }}{PARA 0 "" 0 "" {TEXT -1 16 "updated: 2/24/99" }} {PARA 0 "" 0 "" {TEXT -1 30 "author: Arthur C. Heinricher" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 67 "The basic tools for working with differential equations are in the " }{TEXT 0 7 "DEto ols" }{TEXT -1 23 " library. So load it. " }}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 14 "with(DEtools):" }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }} {SECT 0 {PARA 4 "" 0 "" {TEXT -1 27 "Example #1: Saddle Surface" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 4 "The " } {HYPERLNK 17 "dfieldplot" 2 "dfieldplot" "" }{TEXT -1 65 " command wil l draw the direction field for a first-order system. " }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 187 "dfieldplot([diff(x(t),t)=8*x(t)-11*y(t), \n diff(y(t),t)=6*x(t)-9*y(t)],\n [x(t),y(t)],t= -2..2,x=-0.3..0.3,y=-0.3..0.3,\n arrows=thin,title=`Saddle \+ Surface`);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 320 "phaseportrai t([D(x)(t)=8*x(t)-11*y(t),\n D(y)(t)=6*x(t)-9*y(t)], \\\n \+ [x(t),y(t)],t=0..0.7,\n [[x(0)=2,y(0)=1.7],[x(0) =2.0,y(0)=2.0]],\n stepsize=.005, \n scene=[x( t),y(t)],linecolor=blue,\n method=classical[heunform],\n \+ title=`Saddle Surface`);\n" }}}{PARA 4 "" 0 "" {TEXT -1 0 " " }}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 23 "A little linear algebra" }} {PARA 0 "" 0 "" {TEXT -1 123 "Remember that solving a system of ODE's \+ is really a linear algebra problem: you need to find eigenvalues and \+ eigenvectors." }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "with(linalg ):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "A:=matrix(2,2,[8,-11, 6,-9]);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "eigenvals(A);" } }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "eigenvectors(A);" }}} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 220 "There ar e two eigenvalues. They are real, distinct and negative. The fact th at one is negative and one is positive tells you that some solutions t o this system will decay to zero while others will grow exponentially. " }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }} }{PARA 4 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}} {MARK "3 0" 13 }{VIEWOPTS 1 1 0 1 1 1803 }