1. Suppose that A is an invertible matrix that satisfies $A^{-1} = A^T$. Use the properties of the determinant to show that $\det(A) = \pm 1$. Make sure you note which properties you are using.

2. Show that the matrix

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$$

is invertible, and compute its inverse. You may use either the special formula for a 2×2 matrix, or the general method involving RREF.

3. Suppose A and B are $n \times n$ matrices and that A is invertible but AB is not invertible. What can you say about the determinant of B? What can you conclude about the columns of B? Justify your answers.

4. Let V be the set of all ordered pairs, (x, y). Define the · operation by $c \cdot (x, y) = (cx, -cy)$. Show that this definition does not satisfy axiom (10) given below.

Axiom (10) $1 \cdot u = u$.

5. Suppose that W is the subset of \mathbb{R}^4 given by all vectors of the form (a, b, c, d) with $a - c = 0$ and $b + c + d = 0$. Show that W is a subspace of \mathbb{R}^4.

6. Let W be the subset of \mathbb{P}_2 consisting of all polynomials of the form $a + bt + ct^2$ with $a + b = 0$. Show that W is a subspace of \mathbb{P}_2.

7. Suppose that A is an $m \times n$ matrix. Explain what it means for a vector b to be in the column space of A.

8. Let V be the vector space of all functions that are continuous on the interval $[0, 1]$. Let $T : V \rightarrow \mathbb{R}$ be defined by

$$T(f) = \int_0^1 f(x) \, dx$$

Show that T is a linear transformation. Then explain why T cannot be one to one.

9. Find a set of vectors that spans the null space of the matrix given below.

$$A = \begin{bmatrix} 1 & 2 & -4 & 3 \\ 0 & 1 & -2 & 0 \\ 2 & -1 & 2 & 6 \\ -1 & 3 & -6 & -3 \end{bmatrix}$$