1. Determine if the following set of polynomials spans P_2.
\[\{t^2 + 2, t^2 - 2, t + 1\} \]

2. Let W be the set of all vectors in \mathbb{R}^4 of the form shown below, where a, b, and c represent arbitrary real numbers. Either find a set of vectors that spans W or give an example that shows that W is not a vector space.
\[
\begin{pmatrix}
 a + b + c \\
 2a - b \\
 0 \\
 3a - 2b - 5c
\end{pmatrix}
\]

3. Consider the following matrix.
\[
\begin{pmatrix}
 1 & 0 & 0 \\
 1 & 2 & 0 \\
 3 & 4 & 4
\end{pmatrix}
\]
First, compute the determinant of this matrix. If the matrix is invertible, compute its inverse.

4. Let V be the set of all ordered pairs of real numbers. Define the addition operation by $(x_1, y_1) + (x_2, y_2) = (x_2, y_1 + y_2)$. Show that this definition does not satisfy axiom (4) (given below) of a vector space.
Axiom (4) There is a zero vector $\mathbf{0}$ in V such that $u + \mathbf{0} = u$ for all u in V.

5. Let A be an $n \times n$ matrix. Suppose that the linear transformation given by $\mathbf{x} \rightarrow A\mathbf{x}$ is not one-to-one. List five other distinct statements about A that must be true.

6. Let $T : \mathbb{P}_3 \rightarrow \mathbb{P}_2$ be defined by $T(p) = p'(t)$. That is, T acts by differentiating. Show that T is linear and find the kernel of T. Is T one-to-one? Is T onto? Justify your answers.

7. Suppose A and B are $n \times n$ matrices and that A is invertible but AB is not invertible. What can you say about the determinant of B? What can you conclude about the columns of B? Justify your answers.

8. Let V be the vector space of all functions that are continuous on the interval $[0, 1]$. Let $T : V \rightarrow \mathbb{R}$ be defined by
\[
T(f) = \int_0^1 f(x) \, dx
\]
Show that T is a linear transformation. Then explain why T cannot be one to one.