MA 2071	Linear Algebra	Name:	
Final a, E	Term 2013	Section:	
Show all we	ork needed to reach your answers.		
1. (20 pc	pints)		
(a) F	Please compute the determinant of the fo	llowing matrix:	$\left[\begin{array}{rrrr} 1 & -1 & 2 \\ 0 & 2 & 1 \\ 2 & -1 & 3 \end{array}\right]$

determinant value:

(b) Is the above matrix singular or nonsingular? If it is singular, please explain why; if it is nonsingular, please compute its inverse.

- 2. (6 points) Think carefully; compute little.
 - (a) What are the eigenvalues of the matrix?

Γ	1	-1	2	6	-1	٦
	0	2	1	5	4	
	0	0	-1	-2	$\overline{7}$	
	0	0	0	4	11	
L	0	0	0	0	-3	

- (b) Why or why not is the above matrix diagonalizable?
- (c) What is the determinant of this matrix?
- 3. (14 points) Please find a matrix A with eigenvector $\begin{bmatrix} 1\\1 \end{bmatrix}$ corresponding to the eigenvalue 3 and eigenvector $\begin{bmatrix} 1\\-1 \end{bmatrix}$ corresponding to the eigenvalue 5.

4. (20 points) Consider the matrix

$$A = \begin{bmatrix} 1 & 2 & -4 & 3 \\ 0 & 1 & -2 & 0 \\ 2 & -1 & 2 & 6 \\ -1 & 3 & -6 & -3 \end{bmatrix}$$

(a) Please find a basis, \mathfrak{B}_1 , for $\operatorname{Col}(A)$, the column space of A.

(b) Please find a basis, \mathfrak{B}_2 , for Null(A), the null space of A.

5. (10 points) In terms of least squares, which line best fits that points (1, -1), (2, 4), and (0, -3)?

6. (10 points) Are these vectors is linearly dependent or linearly independent? Please justify your answer.

$\left(\right)$	[1]		1		1])
{	1	,	0	,	4	}
l	3		1		7]]

7. (12 points) Please use the Gram-Schmidt process to find an orthonormal basis for \mathbb{R}^3 using in order the basis vectors

$\left(\right)$	[1]		1		$\begin{bmatrix} 2 \end{bmatrix}$)
{	0	,	1	,	1	}
l	1		2			J

- 8. (8 points) Suppose \mathcal{V} is a vector space over the reals. Suppose also that v_1 and v_2 are both vectors in \mathcal{V} , and $\alpha \in \mathbb{R}$.
 - (a) According to the definition of vector space,

 $\alpha(\boldsymbol{v}_1 + \boldsymbol{v}_2) =$

- (b) Which of the following is **not** required by the definition of vector space:
 - i. $v_1 + v_2 = v_2 + v_1$ ii. $v_2 - v_2 = 0$ iii. $v_1 \cdot v_2 = 0$ if and only if $v_1 \perp v_2$ iv. $1v_1 = v_1$

Please explain your answer.