MA 2071 Linear Algebra

Name:

Section:

Final 1, E Term 2017

Show all work needed to reach your answers.

1. (8 points) For which value of h are these vectors orthogonal?

$\begin{bmatrix} -3 \end{bmatrix}$		$\begin{bmatrix} -5 \end{bmatrix}$
h		2
-7	,	-1
4		$\begin{bmatrix} -3 \end{bmatrix}$

h =

2. (12 points) Please solve the following linear system. Does a solution exist, and is it unique? Please state whether the system is consistent or inconsistent, and find all possible solutions.

-x	+	3y	+	4z	=	-7
2x	_	3y	_	2z	=	8
-x	_	3y	_	8z	=	5

Solution:

	3	1	-2	-3
2. $(10 - int)$ Places conducts this determinant with set converting to a number	-2	0	4	0
3. (10 points) Please evaluate this determinant without computing too much:	1	-1	0	-3
	0	-1	0	-3

Determinant Value:

4. (10 points) For the matrix A below, please find a basis for the null space of A, Null(A). $A = \begin{bmatrix} 1 & -2 & 1 & 1 \\ -1 & 3 & 0 & 2 \\ 2 & -3 & 3 & -1 \end{bmatrix}$ 5. (12 points) Consider the matrix

$$A = \begin{bmatrix} 1 & 3\\ 0 & -5\\ -2 & -1 \end{bmatrix} \quad \text{and the vector} \quad \mathbf{b} = \begin{bmatrix} 3\\ 1\\ 2 \end{bmatrix}$$

For this A and **b**, the system $A\mathbf{x} = \mathbf{b}$ is inconsistent. Please find the best least squares approximate solution, $\mathbf{\hat{x}}$.

 $\mathbf{\hat{x}} =$

6. (12 points) Please find the 2 × 2 matrix with eigenvalues $\lambda_1 = 3$, $\lambda_2 = -1$ and eigenvectors $\mathbf{x}_1 = \begin{bmatrix} 2\\5 \end{bmatrix}$, $\mathbf{x}_2 = \begin{bmatrix} 1\\3 \end{bmatrix}$.

Matrix:

7. (10 points) Please write the vector	$\begin{bmatrix} 1 \\ 9 \\ 2 \end{bmatrix}$	in terms of the basis $\boldsymbol{\cdot}$) 	$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$,	$\begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$,	$\begin{bmatrix} 2\\ 3\\ 1 \end{bmatrix}$		>
	L	l	(L ° -	1	L - 1)	

Vector:

8. (10 points) For the matrix ${\cal A}$ below, please find the LU decomposition.

$$A = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 \\ -4 & -6 & 1 & -4 & 1 \\ 0 & 4 & -2 & 3 & -2 \\ 3 & 1 & 1 & 18 & -3 \end{bmatrix}$$

L =

- 9. (10 points) Fill in the blanks:
 - If A is an invertible matrix, then $det(A^{-1}) =$
 - If a matrix is invertible, then its eigenvalues are
 - For any square matrix, the eigenvectors associated with distinct eigenvalues must be
 - For a matrix A with n columns and m linearly independent rows (m < n), then n m is the dimension of

- For an $m \times n$ matrix, the largest possible number of pivots is
- 10. (6 points) Suppose that $A \in \mathcal{M}_{3,3}$ and that A^5 is the zero matrix. Explain why zero is the only possible eigenvalue of A.