Divergence Theorem Proof

Consider a region $ A\subset\mathbb{R}^2$ whose boundary $ \partial A$ is a rectifiable simple closed curve. Partition $ A$ into a set of sufficiently small rectangles $ \delta A_i$ (near the boundary, the partition elements are not necessarily rectangular). Let $ \vert\delta A_i\vert$ denote the area of $ \delta A_i$. For each of the $ \delta A_i$, let $ (x_i, y_i)$ be a point in the interior of $ \delta A_i$.

Region Graphic

Figure: Region $ A$, its boundary $ \partial A$, and the partition.

From the definition of divergence, for the point $ (x_i, y_i)$ in the partition element $ \delta A_i$,

   div$\displaystyle (\boldsymbol u)(x_i,y_i) = \lim_{\vert\delta A_i\vert\rightarrow ...
...delta A_i}\boldsymbol u\cdot\boldsymbol n\ ds + \mbox{o}(\vert\delta A_i\vert)
$

where the error term o$ (\vert\delta A_i\vert)$ goes to zero sufficiently fast as $ \vert\delta A_i\vert\rightarrow 0$.

Now, summing over all of the partition elements,

$\displaystyle \sum_i$div$\displaystyle (\boldsymbol u)(x_i,y_i)\vert\delta A_i\vert =
\sum_i\int_{\partial\delta A_i}\boldsymbol u\cdot\boldsymbol n\ ds +$   O$\displaystyle (\vert\delta A_i\vert) =
\int_{\partial A}\boldsymbol u\cdot\boldsymbol n\ ds +$   O$\displaystyle (\vert\delta A_i\vert)
$

where the second equality is due to the cancellation of line integrals on the boundaries of adjacent partition elements (cf. Figure (b)).

Finally, taking the limit as $ \vert\delta A_i\vert\rightarrow 0$, one finds

$\displaystyle \int\hspace{-0.33cm}\int_{\hspace{-0.76cm}\ _{\ _{\ _A}}}$   div$\displaystyle (\boldsymbol u) dA =
\lim_{\vert\delta A_i\vert\rightarrow 0}\sum_i$div$\displaystyle (\boldsymbol u)(x_i,y_i)\vert\delta A_i\vert =
\int_{\partial A}\boldsymbol u\cdot\boldsymbol n\ ds
$

Reference: P.C. Mathews, Vector Calculus, Springer-Verlag, London, 1998.

Copyright, 2001, Joseph D. Fehribach