Chapter 4: An Introduction to Statistical Modeling

Day 1 :
the PICTURE

In Chapters 1 and 2, we learned some basic methods for analyzing the pattern of variation in a
set of data. In Chapter 3, we learned that in order to take statistics to the next level, we have
to design studies to answer specific questions (raised, perhaps, by the exploratory and analytical
techniques studied in Chapters 1 and 2). We also learned something about designed studies.

We are now ready to move to the next level of statistical analysis: statistical inference. Statistical
inference uses a sample from a population to draw conclusions about the entire population. The
material of Chapter 3 enables us to obtain the sample in a statistically valid way. In order to
obtain valid inference and to quantify the precision of the results obtained, we will need to study
some of the models and probabilistic concepts found in Chapter 4.

Preview:

e Motivation: statistical inference

e Density histograms

e Population histograms and density curves
e Random variables

e Distribution models

e The binomial and normal distributions

e The power of models

e The Central Limit Theorem

e Identifying probability distributions

e Transformations to normality

Statistical Inference

Recall from Chapter 3 that the Target Population was defined as a collection of sampling units
about which we want to draw conclusions. From now on, we’ll drop the “target”, and refer to the
target population as the population.

Statistical Inference is the use of a subset of the population (the sample) to draw conclusions
about the entire population. More specifically, we’ll use measurements taken from the sampling
units to draw our conclusions, so that when we speak of the population, we will mean the population
of measurements.

A Word on Population Sizes

All known populations of actual sampling units are finite: they have a finite number of sampling
units. However, some have a very large number of sampling units. It is mathematically easier and
statistically effective to assume such populations are infinite.

In addition, some conceptual populations really are infinite: think of the population consisting of
the numbers of dots that turn up in all possible tosses of a particular six-sided die (in this case the
sampling unit is the toss of the die).

For these reasons, and because it is a little more difficult to deal with finite populations statistically,
in this course we will consider all populations to be infinite.



Some Fine Print on Inference

The validity of inference is related to the way the data are obtained, and to the stationarity of the
process producing the data.

For valid inference the units on which observations are made must be obtained using a probability
sample. The simplest probability sample is a simple random sample (SRS).

Density Histogram:

Histogram for data in which area, rather than height of bar, represents frequency.

e This allows proper representation of histograms with unequal interval widths.

e For a density histogram the bar height is the density of the bar: the relative frequency/(unit
interval length).

e The total area of the bars equals 1.

Figure 1 shows a density (top) and frequency (bottom) histogram of the heights of 105 high school
students. The only difference in the two histograms is the units on the vertical axis.
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Figure 1: A density (top) and frequency (bottom) histogram of the heights of 105 high school students.

Population Histogram:

Frequency and density histograms are ways to represent the pattern of variation in data, which is
usually a subset of measurements from a population. A population histogram is designed to
represent the pattern of variation in a population. If there are a finite number of values in the
population, the population histogram is a density histogram with one bar for each value in the
population.

Recall, however, that we are assuming infinite populations, and defining population histograms for
infinite populations requires a little more care.

Suppose that the set of measurement values is discrete (finite or countable: the set of all the
integers is an example of the latter). Then, the population histogram is like a density histogram
with one bar for each measurement value in the population. The area of the bar for a measurement
value corresponds to the “proportion” of population measurements that take that value. Since the
population is infinite, this “proportion” is defined as a limit.



Example 1

Consider the population consisting of all possible rolls of a single six-sided die. Then the population
histogram will consist of six bars: one for each of the outcomes of 1, 2, 3, 4, 5, or 6 dots.

We may think of obtaining the population measurements by repeatedly rolling the die. Let N, ({1})
denote the number of times a “1” occurs in the first n rolls. Then the proportion of the first n
measurements that result in a “1” is P,({1}) = Nn({1})/n. As we make more and more rolls,
P,({1}) will approach a limiting value, P({1}), which we define to be the “population proportion”
of measurements that take the value 1. This is the area of the bar for measurement value 1. The
areas of the other bars may be thought of in the same way.

Notes:

(a) The “population proportions” we have just defined are also known as probabilities. Thus, in
Example 1, P({1}) is the probability the die comes up 1. In this context, it is often useful to
interpret the “population proportion” having a certain measurement value as the probability
that a randomly-selected measurement has that value.

the die is fair in Example 1, the area of each bar will equa . e correspondin
b) If the die is fair in E le 1, th f each b ill 1 1/6. Th ding
population histogram is shown in Figure 4.2, p. 151 of the text.

What’s the ID EA"

The population (or probability) histogram displays the pattern of variation of a population
of discrete measurements. It displays one bar for each measurement value, and the area of the bar
equals the population proportion (or probability) of that value.

Suppose we sample randomly and repeatedly from the population characterized by a population
histogram, and after every new measurement is sampled, we form a density histogram of the
measurements obtained so far, using the same set of bars as in the population histogram. Then
the sequence of density histograms will converge to the population histogram. Figure 4.4, p. 153 of
the text illustrates the convergence of density histograms for tosses of a fair die to the population
histogram.

Day 2 :

Density Curve

The pattern of variation of the population measurements is described differently if the set of
measurement values is continuous (for our purposes, this means it consists of an interval). In this
case, we model the population measurements by means of an idealized curve called a density
curve. The area under the density curve between two real numbers @ and b is interpreted as the
“population proportion” of measurements that take values between a and b. Here “population
proportion” is taken in the same limiting sense discussed earlier. Figure 4.6, p. 176 gives a
graphical representation of probability as area under a density curve.

Example 2



The exponential density curve is often used to model the population of lifetimes of electronic
components. Its equation is

p(y) = 0,y<0,
= e y>0

Suppose we feel the population of lifetimes (in years) of all transistors of a given type is given by
the exponential density curve. The proportion of all transistors that last between 1 and 2 years is
then the area under the curve between y = 1 and y = 2, which is given by the integral

2
/ eldy=—e?i=e ! —e 2~ 0.2325
1

Notes:

(a) As in the discrete case, we equate “population proportion” with probability. So in Example
2, we would say that the probability a transistor randomly chosen from the population lasts
between 1 and 2 years is 0.2325.

(b) The fact that for continuous measurements population proportion or probability is defined in
terms of area under the density curve, implies that the population proportion of measurements
taking any specific value is 0. For instance, according to the exponential distribution model
in Example 2, the population proportion of lifetimes equal to 1 hour is

1
/ e Ydy=0.
1

This is a reflection of the idealized world of the continuous distribution model in which no
two measurements (here, transistor lifetimes) are exactly the same.

(c) However, the height of the density curve tells relatively how likely a measurement chosen
randomly from the population is to occur very near any point. For example, if @ and b are
two real numbers, and if the density curve is twice as high at a as at b, then the population
proportion of measurements very close to a is twice the population proportion of measurements
very close to b.

To make this concrete, consider Example 2, and note that the population proportion having
lifetimes within 0.01 hours of 1 hour is

1.01
/ e Ydy ~ (0.02)(e™1),
0.99
while the population proportion having lifetimes within 0.01 hours of 2 hours is
2.01
/ e Ydy ~ (0.02)(e™?).
1.99

Therefore, the population proportion of lifetimes very close to 1 is approximately

(0.02)(e™")/(0.02)(e™*) = e~ */e™* = p(1)/p(2)

times the population proportion of lifetimes very close to 2. Since e~1/e™% = e ~s 2.71818, we
conclude that the population proportion of lifetimes very close to 1 is approximately 2.71818
times the population proportion of lifetimes very close to 2.

What’s the ID EA."



The density curve displays the pattern of variation of a population of continuous measurements.
The population proportion (or probability) of measurements taking values in any interval equals
the area under the density curve over the interval. The relative values of the density curve at
two different points can also be interpreted as the relative proportion of measurements (or relative
probabilities of obtaining a measurement) very near the points.

Suppose we sample randomly and repeatedly from the population characterized by a density curve,
and after every new measurement is sampled, we form a density histogram of the measurements
obtained so far. If the numbers of bars in the sequence of density histograms are allowed to increase
in a reasonable way, the density histograms will converge to the density curve of the population.
Figure 4.7, p. 177 of the text illustrates this.

Day 3 :

Random Variables

We have been discussing measurements selected randomly from a population. The name given to
such measurements is random variable. To emphasize the fact that they are random quantities,
random variables are denoted by upper-case Roman letters, such as Y or Z. In statistical inference,
the sample data obtained are assumed to be random variables independently chosen from the
population.

Though randomness in random variables can result from such causes as measurement error, the
source of their randomness that is of greatest interest (and probably of greatest import) is their
random selection from the population.

It is important to distinguish between random variables and the values they take. We will often
say something like, “Suppose Y7,Y3,...,Y, is a random sample.” By this we mean that the data
consist of independent measurements (random variables) Y1, Y3, .. ., ¥, randomly selected from the
population. The capital Y's tell us that these are random variables whose values will be unknown
until the random selection is done. The values they take once the selection has been done will be
denoted by small ys: y1,¥2,...,¥Yn-

Distribution Models

The pattern of variation displayed by the population histogram or density curve is called the
distribution model (or just distribution) of the population measurement (random variable).
In the discrete case, the distribution model consists of the probabilities the measurement takes on
each possible value. In the continuous case, it consists of the density curve.

Just as the pattern of variation of a set of data is visually summarized by a frequency or density
histogram, the pattern of variation of the population is visually summarized by the population
histogram or density curve.

And just as the pattern of variation of a set of data is numerically summarized by measures of
location such as the mean or median and measures of spread such as the standard deviation or IQR,
we can define numerical measures of location and spread to summarize the pattern of variation of
the population.

The most common measure of location for a population measurement is the population mean,
which can be thought of as the place where the population histogram (or density curve) “balances.”
This interpretation is analogous to the interpretation of the mean of a data set.

The most common measure of spread for a population measurement is the population standard
deviation, whose formula is similar to that of the standard deviation of a set of data. The
population variance is equal to the square of the population standard deviation.



Population versus Sample Measures

Be careful not to confuse population measures, such as the mean, variance or standard deviation,
with their sample counterparts. As the name implies, population measures summarize the entire
population, while sample measures summarize a set of data taken from the population. To avoid
confusion, we use Greek letters for population quantities. Thus, (1) The population mean is
denoted p, the Greek letter “mu”, which is equivalent to our letter m, and (2) The population
standard deviation is denoted o, the Greek letter “sigma,” which is equivalent to our letter s. The
population variance is denoted 2. (Recall that the sample mean, standard deviation and variance
are denoted ¥, s and s?, respectively.)

What’s the ID EA."

Populations are large collections of measurements about which we are going to want to draw
conclusions. Populations are modeled mathematically using distribution models. Graphically,
these take the form of population (or probability) histograms or density curves.

A measurement taken randomly from the population is called a random variable. The pattern
of variation of the random variable is summarized by the same distribution model that describes
the population.

To make inference about the population, we will obtain a sample of measurements from the
population. These measurements are characterized as n indpendent random variables. Once the
measurements are obtained, the randomness of the random variables disappears, and the numbers
obtained become data.

The Binomial Distribution Model I: An Example

The binomial distribution model is used in drawing inferences about a population proportion: that
is, the proportion of a population that has some characteristic.

Example 3

For instance, suppose the population of interest is a large (in fact, we’re going to assume it is
infinite) production lot of 12 ounce containers of frozen orange juice concentrate, and the charac-
teristic of interest is the acceptability of the concentrate as defined by a set of quality measures.
Since we cannot test all containers in the lot (there are too many, and besides, testing destroys
the product), we will test a random sample of n containers and use the results to estimate the
population proportion of all containers that are acceptable. Estimation of this sort is the type of
statistical inference we’re leading up to here. But before we can tell how to do estimation, we need
to develop some theory on the binomial distribution model.

To make things simple, suppose we take a random sample of n = 3 containers, and suppose the
true population proportion of acceptable containers is p. Then, in terms of the acceptability of
the containers in the sample, there are 8 possible outcomes (A denotes acceptable, U denotes
unacceptable):

Container
Outcome

1
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Because we are assuming the population is infinite (see the notes below), the probability each
sampled container is acceptable is p, and the probability it is unacceptable is therefore 1 — p. In



addition, the containers are sampled randomly from the population, and therefore whether any
one is acceptable or not is independent of the quality of the other sampled containers. Because of
independence, the probability of any of the eight outcomes in the table is computed as the product
of the probabilities of the outcomes for each individual container. So, for example, the probability
of outcome 3 is

P({AUA}) = P{A})P({U})P({A}) =px (1-p) x p=p*(1 - p).

All eight probabilities may be computed this way. the results are listed in the following table:

Container
Outcome 1 2 3 Probability

1 A A A p3

2 A A U p¥(1-p)
3 A U A p*(1-p)
4 U A A p¥(1-p)
5 A U U p(l-p)?
6 U A U p(l-p)?
7 U U A p(l-p)?
8 U U U (1-p)3

It turns out that in order to make the best use of the sample data to estimate the population
proportion p, we need not consider all eight outcomes listed. All we need consider is the number of
acceptable cans in the sample, which we will denote Y. Y is a measurement from the population
(random variable) that can take the values 0, 1, 2 or 3. Here are the values of Y for the various
juice container samples.

ontainer
Outcome

1

Probability
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Y
3
2
-p) 2
2
1
1
1
0
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The distribution model for Y is (here py(y) denotes the probability ¥ = y: i.e., there are exactly
y acceptable cans in the sample):

pr(y)= (1-p)?° y=0
3p(l-p)? y=
3p*(1-p), y=2

»°, y=3

Notice that py (1) consists of outcomes 5, 6, and 7 and py(2) consists of outcomes 2, 3, and 4,
which explains the factor 3 in the distribution model.

Let’s recapitulate:

The measurement Y was obtained by

1. Taking three independent measurements from the population,



2. Of which each measurement could take one of two values (A or U),

3. With the same probability of obtaining each value (p for A and 1 — p for U) at each measure-
ment.

Y was then the total occurrences of one of the two values (A) in the three measurements.

The distribution model derived here is common enough to have a name. We say that ¥ has a
binomial distribution with parameters 3 and p, written ¥ ~ 5(3,p). The 3 refers to the
number of original measurements in the sample, and the p refers to the probability of obtaining
an A for any of the original measurements.

NOTE: In Example 3, we assumed the population (the lot of OJ containers) was infinite. In
practice, of course, lots of OJ containers are not infinite. If the population is finite, the number of
acceptable OJ containers in the sample no longer has a binomial distribution, and here is why.

Suppose the population has N OJ containers, of which k (equivalently, a proportion p = k/N)
are acceptable. Then the first container sampled is acceptable with probability p. If the first
container is acceptable, there are now k — 1 acceptable among the remaining N — 1, so the second
container is acceptable with probability (k — 1)/(N — 1). If the first container is not acceptable,
the second is acceptable with probability k/(N — 1). Either way, the probability the second is
acceptable changes, so the number of acceptable containers in the sample does not have a binomial
distribution.

However, if the population size, N, is large relative to the sample size, then the binomial will be a
good approximation to the number of acceptable containers in the sample. It is in this sense that
the binomial can be used in finite populations.

The Binomial Distribution Model II: The General Case

We get the general case of the binomial distribution model by considering n measurements (instead
of 3) in the sample. Here’s how it goes.

1. Take n independent measurements from the population,

2. Of which each measurement can take one of two values (instead of A or U, the common
terminology is “success” and “failure”),

3. With the same probability of obtaining each value (p for “success” and 1 — p for “failure”) at
each measurement.

If Y denotes the number of “successes” in the n measurements, Y has a binomial distribution with
parameters n and p, written ¥ ~ b(n, p). The distribution model is

n e
pr(y) = < v )Py(l—p) Y, y=0,1,...,n,

n\ n!
( y ) ~ yl(n - y)!
are called binomial coefficients.
NOTE: Here ! means factorial, so that for any integer k, k! is the product k(k — 1)(k —
2)---(3)(2)(1) (0! is defined to be 1). Thus, if, as in Example 3, n = 3,

pe()= (3 )ol-0 = g gyl =0 = g pypl =) = 39l 81,

where the values

which is the value obtained in the example.

The mean of the b(n, p) distribution model is np and the variance is np(1 — p).



Day 4 :

Decision-Making Using the Binomial Distribution Model

One stage of a manufacturing process involves a manually-controlled grinding operation. Man-
agement suspects that the grinding machine operators tend to grind parts slightly larger rather
than slightly smaller than the target diameter, while still staying within specification limits. To
verify their suspicions, they sample 150 within-spec parts and find that 93 have diameters above
the target diameter. Is this strong evidence in support of their suspicions?

To find out, we begin by supposing that there is no tendency to grind to larger or smaller diameters
than the target diameter. Then the number of the 150 parts, Y, having diameters larger than the
target diameter will have a 5(150, 0.5) distribution. In this case, the probability of finding 93 or
more parts with diameters larger than the target diameter is

P(Y >93) =
150! 03 57 150! 04 56
531571 (0-8)°2(0.8)"" + 5153 (0.5)°%(0.5)
+...+
150! 149 1 150! 150 0
Srari (0-8)2°(0.5)" + =25(0.5)%°(0.5)
= 0.0021.

Thus, if there is no tendency to grind to larger or smaller diameters, they would observe as many
as 93 of 150 sampled parts having diameters greater than the target in only 21 of 10000 samples.

What’s the ID EA"

The binomial distribution model b(n, p) models the number of successes in n independent trials
where the probability of success equals p at each trial. The parameter p is often identified with
the population proportion of successes.

The Power of Models

e Quantifiers of data

e Extend range of conclusions

The Normal Distribution Model

The most important and famous of all distribution models is the normal distribution model. It’s
density curve is the famous “bell curve,” given by the equation

py (y) = a\}ﬂ

_l(y—M)Z
e 2\ o/  —oo<y< oo

As you might expect from the notation, the population mean is p and the population variance is
o2. A measurement Y from this population is said to have a normal distribution with parameters
(or mean and variance) p and o2, written Y ~ N(p, o?).



Computing Normal Probabilities

All probabilities from any normal distribution can be reduced to probabilities from a standard
normal (i.e. N(0,1)) distribution. Specifically, if Y ~ N(u, o?), then

Y —
z=—"F_nN(,1).
g

So,

o (o3

— bh—
P(a<Y<b):P(a “<Z<—“).

Example 4

The ability of a process to produce products that satisfy engineering specifications can be assessed
by a process capability study. Here is a simple example:

Assembly line specifications at an auto manufacturing plant call for the assembly time of a wire
harness module to take between 750 and 1000 seconds. Times recorded on the line for a large
sample of these assemblies have a mean of 911 and a standard deviation of 42. Further, the
assembly times in the sample have the bell-shaped histogram typical of data from the normal
distribution.

If we assume the population of assembly times has a N(911,422) distribution, and if Y represents
a random assembly time from the population, we can estimate the within-spec proportion of all
assembly times as

P(750 < Y < 1000) =

750 — 911 1000 — 911
Pz — 7
< 2 ST » )

P(-383<Z<212) = 0.9829

Thus, we estimate the 98.29% of wire harness module assembly times are within spec.

Day 5 :

The Central Limit Theorem

The Central Limit Theorem (CLT) is the most important theorem in statistics. In words, it says:

As long as the population standard deviation is finite, the distribution of the mean (or sum) of
independently chosen data from that population gets closer and closer to a normal distribution as
the sample size increases.

Mathematical Statement of the Central Limit Theorem

Suppose that Y7,7Y53,. .. are independent random variables having a distribution with mean p and
variance 02 < oco. Let

be the mean of the first n random variables. It can be shown (and is shown in the text) that the
random variable Y has mean u and variance 0% /n (hence, standard deviation o/4/n).



Let Z, be the standardized mean: Z, = 1;7\;5 Then
b1 e
lim Pla< Z, <b)= ——e 2 dz.

n— 00 a /2T

That is, as n gets larger, the distribution of Z,, gets closer and closer to a N (0, 1).

The Normal Approximation to the Binomial Distribution
First note that by multiplying both numerator and denominator by n, we can write
_Ya-—p_ YL, Yi—nu
 o/vn ov/n '
Next, note that if W ~ b(n, p), we can write W = 3 | Vi, where Y7,Y2,...Y, are independent

b(1,p) random variables. Also note that the mean and standard deviation of the ¥; are uy = p
and oy = +/p(1 — p), respectively. Then if n is large enough, the CLT says that

Zn

Zz"nzl YL — npy
O'Y\/ﬁ
W —np

np(l — p)

Ly =

has approximately a N(0, 1) distribution.

So if n is large enough, a standardized binomial random variable (subtract its mean then divide
by its standard deviation) has approximately a N(0, 1) distribution.

How large does n have to be? Detailed guidelines are given in the text on p. 196, but values of n
satisfying np > 10 and n(1 — p) > 10 will give good results for almost all applications.
A Better Normal Approximation to the Binomial Distribution

The continuity correction can make the CLT approximation to the binomial more accurate. The
continuity correction consists of adding or subtracting 0.5 from the endpoints of the interval (k, m)
when finding P(k <Y < m):

P(k<Y <m)
=Pk—-05<Y <m+0.5)
:P</<:—0.5—npS Y —np Sm—|—0.5—np)
vnp(l—p) = /np(1-p) np(1 — p)
Np(k—0.5—np<z<m+0.5—np),

vnp(l—p) = = +/np(l-p)

where Z ~ N(0,1).

Example 5
Recall the following problem:

One stage of a manufacturing process involves a manually-controlled grinding operation. Man-
agement suspects that the grinding machine operators tend to grind parts slightly larger rather
than slightly smaller than the target diameter, while still staying within specification limits. To
verify their suspicions, they sample 150 within-spec parts and find that 93 have diameters above
the target diameter. Is this strong evidence in support of their suspicions?



And its solution: Suppose that there is no tendency to grind to larger or smaller diameters than
the target diameter. Then the number of the 150 parts, Y, having diameters larger than the target
diameter will have a 5(150,0.5) distribution. In this case, the probability of finding 93 or more
parts with diameters larger than the target diameter is

P(Y >93) =
1500 ga o ep  1BOD o, o
o31571(0-)7(0-5)°7 4 5 5(0.5)4(0.5)
ot
150! rag/ on1 . 150! 150/ m =10
Taorg1(0-5)142(0.5)! + 7235 (0.5)°°(0.5)
= 0.0021.

Thus, if there is no tendency to grind to larger or smaller diameters, they would observe as many
as 93 of 150 sampled parts having diameters greater than the target in only 21 of 10000 samples.

We will use the CLT with the continuity correction to approximate P(Y > 93). First, the continuity
correction:

P(Y >93)= P(Y >93—0.5) = P(Y > 92.5)

Now, by assumption, p = 0.5, so

V/(150)(0.5)(1 — 0.5) — 1/(150)(0.5)(1 — 0.5)
P(Z > 2.86) = 0.0021,

P(Y >92.5)= P ( Y - (150)(0.5) 93 -05- (150)(0.5)) N

which equals the exact value to four decimal places. Note: if we don’t use the continuity correction,
the CLT approximation gives an approximate probability of 0.0012, not nearly as close.

What’s the ID EA"

The Central Limit Theorem is a surprising result that says: regardless of the distribution of a
population, as long as the population standard deviation is finite, the distribution of the mean
(or sum) of independently chosen data from that population gets closer and closer to a normal
distribution as the sample size increases.

Day 6 :

Assessing Normality
A quick and simple check: 68-95-99.7 rule.

Identifying Common Distributions

A Q-Q plot is a plot to decide if it is reasonable to assume a set of data are drawn from a known
distribution model (called a candidate distribution model). Details of how to construct a Q-Q plot
are found in the text. Since the computer will construct the plot for you, these details are not
important for you to know. What is important is the idea behind them, which we present now.



We suppose the data consist of n observations, and that these are, in increasing order, y(;) <
Ye) < --- < Y@m)- The k" quantile rank of the candidate distribution model is the point (k)
below which lies the proportion k/n of the population values. If the data comes from the candidate
distribution, then a plot of the pairs (y(),q(x)) on a scatterplot should roughly follow a straight
line. This is the Q-Q plot. In question.

Transformations to Normality

e If the data are positive and skewed to the right, In(Y’) or VY should look more normal.

e If the data vary by more than 1 or 2 orders of magnitude, try analyzing In(Y’), for positive
data, or —1/Y.

e If the data consist of counts, try analyzing VY.

e If the data are proportions and the ratio of the largest to smallest proportion exceeds 2, try

the logit transformation:

In(Y/(1 - Y)).



