Chapter 5: Introduction to Inference: Estimation and Prediction

the PICTURE

In Chapters 1 and 2, we learned some basic methods for analyzing the pattern of variation in a
set of data. In Chapter 3, we learned that in order to take statistics to the next level, we have to
design studies to answer specific questions. We also learned something about designed studies. In
Chapter 4, we learned about statistical models and the mathematical language in which they are

written: probability.

We are now ready to move to the next level of statistical analysis: statistical inference. Statistical
inference uses a sample from a population to draw conclusions about the entire population. The
material of Chapter 3 enables us to obtain the sample in a statistically valid way. The models
and probabilistic concepts of Chapter 4 enable us to obtain valid inference and to quantify the

precision of the results obtained.
Preview:
e The models: C+E and binomial

e Types of inference: estimation, prediction, tolerance interval

e Estimation basics:



o Estimator or estimate?

o Sampling distributions

o Confidence intervals

e Estimation for the one population C+E model

e Prediction for the one population C+E model

e Estimation for the one population binomial model

e Determination of sample size

e Estimation for the two population C+E model

e Estimation for the two population binomial model

e Normal theory tolerance intervals

Statistical Inference: Use of a subset of a population (the sample) to draw conclusions

about the entire population.

The validity of inference is related to the way the data are obtained, and to the stationarity of the

process producing the data.

For valid inference the units on which observations are made must be obtained using a probability

sample. The simplest probability sample is a simple random sample (SRS).

The Models we will study



e The C+E model

Y =pu+e

where p is a model parameter representing the center of the population, and € is a random

error term (hence the name C+E).

Often, we assume that e ~ N(0,0?), which implies Y ~ N(u,c?).

e The binomial model

The Data

Before they are obtained, the data are represented as independent random variables, Y1,Y3,...,Y,.

After they are obtained, the resulting values are denoted y1,v2,. .., Yn-

For the C+E model, the data are considered a random sample from a population described by the

C+E model (e.g, N(u,0?)).

The binomial model represents data from a population in which the sampling units are observed

as either having or not having a certain characteristic. The proportion of the population having

the characteristic is p. n sampling units are drawn randomly from the population. Y; equals 1 if

sampling unit ¢z has the characteristic, and 0 otherwise. Therefore, Y7,Y3,...,Y, are independent

Bernoulli(p) random variables. For the purpose of inference about p, statistical theory says that

we need only consider Y = 3.7 | Y;, the total number of sampling units in the sample which have

the characteristic. In Chapter 4 we learned that ¥ ~ b(n, p).



Types of Inference

e Estimation of model parameters

e Prediction of a future observation

e Tolerance interval

Estimation for the C4+E Model: Point Estimation

e Least absolute errors finds m to minimize

SAE(m) =) |y — ml.
i=1
For the C+E model, the least absolute errors estimator is the sample median, Q3.

e Least squares finds m to minimize

For the C+E model, the least squares estimator is the sample mean, Y.
Estimator or Estimate?

e The Randomness in a Set of Data From a Designed Study Is in the Production of the Data:

Measuring, Sampling, Treatment Assignment, etc.

e An estimator is a rule for computing a quantity from a sample that is to be used to

estimate a model parameter.



e An estimate is the value that rule gives when the data are taken.

Estimation for the C+E Model: Sampling Distributions

The distribution model of an estimator is called its sampling distribution. For example, in the
C+E model, the least squares estimator Y, has a N(u,c?/n) distribution (its sampling distribu-

tion):

e Exactly, if e ~ N(0, 0?)

e Approximately, if n is large enough. The CLT guarantees it!

Confidence Intervals

A level L confidence interval for a parameter 8 is an interval (él, éz), where él and éz are

estimators having the property that

P(él <9<é2):L.

Estimation for the C+E Model:
Confidence Interval for y: Known Variance

Suppose we know o2. Then if Y can be assumed to have a N(u,0?/n) sampling distribution, we

know that

has a N(0, 1) distribution.



Let z5 denote the § quantile of the standard normal distribution: i.e., if Z ~ N(0, 1), then P(Z <

z5) = 6. Then

VA(Y -

L = P <Z(1_L)/2 < ) < Z(1+L)/2)

— o2 — o2
= P (Y — ﬁz(l-l—L)/z <pu<Y — ﬁZ(l_L)/g) .

Noting that

we obtain the formula for a level L confidence interval for p:

Denoting the standard error of Y, o/4/n, by (Y ), we have the formula
(Y— U(?)Zﬁ,?—‘r U(?)Zﬁ) .

Example 1:
Recall the following example from Chapter 4:

One stage of a manufacturing process involves a manually-controlled grinding operation. Man-
agement suspects that the grinding machine operators tend to grind parts slightly larger rather

than slightly smaller than the target diameter, 0.75 inches while still staying within specification



limits, which are 0.75 £ 0.01 inches. To verify their suspicions, they sample 150 within-spec parts.

Summary measures and graphs are displayed on the following output.

We will assume these data were generated by the C+E model:

Y=p+e

Suppose we know ¢ = 0.0048. Then

0(7) _ o _ 0.0048
y/n /150

= 0.0004,

and a 95% confidence interval for p is

(Y —o(Y)20.075, Y + 0(7)20.975)

= (0.7518 — (0.0004)(1.96), 0.7518 + (0.0004)(1.96))

= (0.7510, 0.7526).

Based on these data, we estimate that w lies in the interval (0.7510,0.7526). As all values in this

interval exceed 0.75, we conclude that the true mean diameter, y, is greater than 0.75.

The Interpretation of Confidence Level

The confidence level, L, of a level L confidence interval for a parameter 8 is interpreted as follows:
Consider all possible samples that can be taken from the population described by 8 and for each
sample imagine constructing a level L confidence interval for 8. Then a proportion L of all the

constructed intervals will really contain 6.



Example 1, Continued:

Recall that based on a random sample of 150 parts, we computed a 95% confidence interval for y,
the mean diameter of all parts: (0.7510,0.7526). We are 95% confident in our conclusion, meaning

that in repeated sampling, 95% of all intervals computed in this way will contain the true value of

Estimation for the C+E Model:
Confidence Interval for y: Unknown Variance

If o is unknown, estimate it using the sample standard deviation, S. This means that instead of

computing the exact standard error of Y, we use the estimated standard error,
&(Y) =

5
T

However, the resulting standardized estimator,

(Y)’

now has a t,,_1, rather than a N(0, 1), distribution. The result is that a level L confidence interval

for u is given by

Example 1, Continued:



Recall again the example from Chapter 4. In reality, we don’t know o, but we can estimate it

using the sample standard deviation, S.

For these data, n = 150 and s = 0.0048, which means that 6(Y) = 0\'/01(%8 = 0.0004. In addition,

t

o1 14L = 1149 0.975 = 1.976, so a level 0.95 confidence interval for u is
1 T3

(0.7518 — (0.0004)(1.976), 0.7518 + (0.0004)(1.976))

= (0.7510,0.7526).

This interval is identical (to four decimal places) with the interval computed assuming o known
because for large n (and 150 is large), the ¢,_; distribution is very close to the N(0,1). This is

reflected in the closeness of zg 975 = 1.96 to t149 0.975 = 1.976.

Prediction for the C4+E Model

The problem is to use the sample to predict a new observation (i.e. one that is not in the sample)
from the C+E model. This is a very different problem than estimating a model parameter, such
as .

To see what is involved, suppose we know p. Then it can be shown that we should predict the

new observation to be u. However, even using this knowledge, we will still have prediction error:

A

Ynew - Ynew = Ypew — M4 = (ﬂ+€new) — 1 = €new,

where Y,, ., 1s the new observation and }A’new is the predictor. The variance of prediction, o2 (Ynew—

}A’new), is therefore o2, the variance of the model’s error distribution.



We won’t know u, however, so we estimate it from the sample by computing 4 = Y, and use this
as the predictor of the new observation. When f is used for prediction instead of estimation, we

call it }A’new. When using }A’new to predict a new observation, the prediction error is

A ~ ~

Ynew — Ynew = (,U' + fnew) — Yoew = (,U' - Ynew) + €new-

u — Y is the error due to using Y to estimate u. Its variance, as we have already seen, is o2 /n.
€new is the random error inherent in ¥, .. Its variance is ¢2. Since these terms are independent,

the variance of their sum is the sum of their variances:

~

0_2 (Yne'w - Yne'w) = 0_2 (,U' - Ynew) + Uz(fne'w)

In most applications o will not be known, so we estimate it with the sample standard deviation S,

giving the estimated standard error of prediction

. / 1
&(Ynew - Ynew) =5 1+ —.
n

A level L prediction interval for a new observation is then

~ A~

Ynew :t &(Ynew - Ynew )t

n—1,—]—



Example 1, Continued:

We return to the grinding example from Chapter 4. Recall that for these data, y = 0.7518, so that

the predicted value is gpewy =y = 0.7518. Also, n = 150 and s = 0.0048, which means that

X 1
G Yoew — Ynew) = 0.004 1 —— = 0.00482.
&( ) = 0.0048y/1+ = = 0.0048

In addition, ¢, | 141 = t149,0.975 = 1.976, so a level 0.95 prediction interval for the diameter of a
'3
new piece is:

(0.7518 — (0.00482)(1.976), 0.7518 + (0.00482)(1.976))

= (0.7422,0.7614).

Interpretation of the Confidence Level for a Prediction Interval

The interpretation of the level of confidence L for a prediction interval is similar to that for a
confidence interval: Consider all possible samples that can be taken from the population, and for
each sample imagine constructing a level L prediction interval for a new observation. Also, for
each sample draw a ‘new’ observation at random from among the remaining population values not
in the sample. Then a proportion L of all the constructed intervals will really contain their 'new’

observation.

What’s the ID EA"

When deciding between a confidence or prediction interval, ask whether you are estimating a model

parameter or predicting a new observation:



A Confidence Interval is a range of plausible values for a model parameter (such as the mean,
or as we will see later, a population proportion). Since the population parameter is fixed, the

only variation involved is the variation in the data used to construct the interval.

A Prediction Interval is a range of plausible values for a new observation (i.e., one not in the
sample) selected at random from the population. The prediction interval is wider than the
corresponding confidence interval since, in addition to the variation in the sample, it must

account for the variation involved in selecting the new observation.

Point Estimation of a Population Proportion

Recall that we observe Y ~ b(n,p). Here, p is the proportion of the population having a certain
characteristic, and Y is the number having that characteristic in a random sample of size n. The

point estimator of p is the sample proportion, = Y/n.

Interval Estimation of a Population Proportion

NOTE: Recent research on confidence intervals for a population proportion p shows that an
interval known as the score interval gives superior performance to both the exact and large
sample intervals described in the text. Further, the same interval works for both large and small

samples.

The score interval has a rather complicated formula. The SAS macro bici computes the score

interval (along with the exact, large-sample (Wald) and yet another interval known as the bootstrap



interval (presented in Chapter 11 of the text).

However, there is an approximate score interval which performs nearly as well as the score

interval, and which has a simple formula. We present this approximate score interval below.

I will require that you use either the score interval or the approximate score interval in homework

and tests. More detailed information on the score interval may be found at

www.math.wpi.edu/Course_Materials/SAS/stat_resources.html

The Approximate Score Interval

The approximate score interval is computed as follows:

1. Compute the adjusted estimate of p:

_ y+0.523,
5o (142)/2

1

nt 2ty

where y is the observed number of successes in the sample.

2. The approximate score interval is obtained by substituting p for p in the large sample confi-

dence interval formula (found in the text):

. p(l1 —p
P* 2Z(14L)/2 y,



Example 2:
We’ll once again consider the grinding example from Chapter 4, but this time in its original
form. Recall that 150 parts were sampled at random and that 93 had diameters greater than the

specification diameter.

We will use these data to obtain level 0.99 confidence intervals for p, the true population proportion

of parts with diameters greater than spec.

The approximate score interval is computed as follows: Since L = 0.99, 2(141)/2 = 20.995 = 2.5758.

Using this in the formula, we obtain

93 + 0.5 -2.57582
150 + 2.57582

F= = 0.6149,

so the interval is

0.6149(1 — 0.6149)
150

0.6149 + 2.5758\/

= (0.51,0.72)

Since the interval contains only values exceeding 0.5, we can conclude with 99% confidence that

more than half the population diameters exceed spec.

A Word About Population Size

Applications such as Example 2, in which we are using a simple random sample from a population

and the binomial distribution model to estimate a population proportion, are valid only if the pop-



ulation is large. In fact, the formulas we are presenting assume the population size is infinite. For
a finite population, as we sample the probability of obtaining a “success” on the next item sampled
will change. For a large finite population, this change will be minor. For a small population, it can
be substantial, with the result that the confidence intervals presented here will be too wide unless

we use a finite population correction for the standard error of the estimator.

The need for finite population correction also holds when doing inference for the C+E model if the

population is small.

The theory and practice of inference for small populations is beyond the scope of this course, so

you can always assume in applications that the population is large.

What’s the ID EA."

All confidence intervals you will see in this chapter have the same form:

ESTIMATOR + MULTIPLIER x

STANDARD ERROR OF ESTIMATOR

The multiplier is based on the sampling distribution of the estimator and the specified confidence

level.

Determination of Sample Size

One consideration in designing an experiment or sampling study is the precision desired in es-

timators or predictors. Precision of an estimator is a measure of how variable that estimator is.



Another equivalent way of expressing precision is the width of a level L confidence interval. For
a given population, precision is a function of the size of the sample: the larger the sample, the

greater the precision.

Suppose it is desired to estimate a population proportion p to within d units with confidence level
at least L. Assume also that we will be using an approximate score interval. The requirement is

that one half the length of the confidence interval equal d, or

2130 \/P(1 —p)/n=d

Solving this equation for n gives the required sample size as

n=(5(1 - p) - 4s ) /d?

2

We can get an estimate of p, from a pilot experiment or study: use the sample proportion . Or,

since p(1 — $) < 0.25, we can use 0.25 in place of p(1 — p) in the formula.

There is an analogous formula when a simple random sample will be used and it is desired to

estimate a population mean p to within d units with confidence level at least L. If we assume the

population is normal, or if we have a large enough sample size (so the normal approximation can

be used in computing the confidence interval), the required sample size is

n=(0?23,.)/d*




Again, this supposes we know o2. If we don’t, we can get an estimate from a pilot experiment or

study.

Example 3:
Suppose we want to use a level 0.90 approximate score interval to estimate to within 0.05 the
proportion of voters who support universal health insurance. A pilot survey of 100 voters finds 35
who support universal health insurance. For simplicity, we use the sample proportion p = 0.35 to

estimate p. Then, since d = 0.05, L = 0.90, and z1+z = 2p.95 = 1.645, the necessary sample size is
2

n = (0.35(1 — 0.35) - 1.645%)/0.05% = 246.24,

so we take n = 247.

The Two Population C+E Model

We assume that there are n; measurements from population 1 generated by the C+E model

Yl,i:,ull'i'fl,ia 1=1,...,nq,

and ny; measurements from population 2 generated by the C+E model

Yoi=p2+e; i=1,...,n2

We want to compare pq and us.

Estimation for Paired Comparisons



Sometimes each observation from population 1 is paired with another observation from population
2. For example, we may want to assess the gain in student knowledge after a course is taken. To
do so, we may give each student a pre-course and post-course test. The two populations are then

the pre-course and post-course scores, and they are paired by student.

In this case n; = ny and by looking at the pairwise differences, D; = Y1 ; — Y3 ;, we transform
the two population problem to a one population problem for C+E model D = up + €p, where
Up = p1 — p2 and €p = €1 — €3. Therefore, a confidence interval for p; — po is obtained by

constructing a one sample confidence interval for pp.

Example 4:

The manufacturer of a new warmup bat wants to test its efficacy. To do so, it selects a random
sample of 12 baseball players from among a larger number who volunteer to try the bat. For each
player, company researchers compute D, the difference between the player’s test year average and
his previous year’s average. Assuming that these differences follow a C+E model, they construct
a level 0.95 confidence interval for the difference in mean batting average, up. The data (found in

SASDATA.BATTING) are:



PLAYER BEFORE AFTER DIFF

1 0.254 0.262 0.008
2 0.274 0.290 0.016
3 0.300 0.304 0.004
4 0.246 0.267 0.021
5 0.278 0.291 0.013
6 0.252 0.257 0.005
7 0.235 0.248 0.013
8 0.313 0.324 0.021
9 0.305 0.317 0.012
10 0.255 0.252 —0.003
11 0.244 0.276 0.032
12 0.322 0.332 0.010

An inspection of the differences shows no evidence of nonnormality or outliers. For these data,
d = 0.0127, s = 0.0092 and t11,0.975 = 2.201. Then &(E) = 0.0092/4/12 = 0.0027, so the desired
interval is

0.0127 + (0.0027)(2.201) = (0.0068,0.0185).

Based on this, we estimate that the mean batting average increases over the previous year by

somewhere between 0.0068 and 0.0185.

Estimation for Independent Populations

Let Y; and Y'; denote the sample means from populations 1 and 2, S? and S? the sample variances.

The point estimator of p; — pg, is Y, -7,

« Equal Variances

If the population variances are equal (62 = 02 = 0?), then we estimate o2 by the pooled

variance estimator

ny — 1)5% + (’I’L2 — 1)5%
ni+ ny — 2 )

(
52 =




The estimated standard error of Y; — Y, is then given by

o) = V1= Y2 = (1 — )
6p(Y1—Y3)

has a tn,4n,—2 distribution. This leads to a level L pooled variance confidence interval for

p1 = pa:

?1 — ?2 + &p(?l — ?z)tn1+n2—2,1+l’

2

« Unequal Variances

If 02 # 02, an approximate level L confidence interval for u; — uz is

ny T2

2\ 2 2\ 2!
51 52
ny n3
ni—1 + na—1

and

Example 5:



A company buys cutting blades used in its manufacturing process from two suppliers. In order to

decide if there is a difference in blade life, the lifetimes of 10 blades from manufacturer 1 and 13

blades from manufacturer 2 used in the same application are compared. A summary of the data

shows the following (units are hours):

Manufacturer | n Y s
1 10 | 118.4 | 26.9
2 13 | 134.9 | 184

Obtain a level 0.90 confidence interval to compare the mean lifetimes of blades from the two

manufacturers.

The experimenters generated histograms and normal quantile plots of the two data sets and found

no evidence of nonnormality or outliers. The estimate of p1 — 2 is y; —y, = 118.4—134.9 = —16.5.

e Pooled variance interval The pooled variance estimate is

10 — 1)(26.9)2 13 —1)(18.4)2
g = (0= D@89+ 13- 1084 _ 0
10+ 13 -2

This gives the standard error estimate of Y, —-Y, as

- = 1 1

Finally, t21,0.95 = 1.7207. So a level 0.90 confidence interval for p; — py is
(—16.5 — (9.44)(1.7207), —16.5 + (9.44)(1.7207))

= (~32.7,-0.3).



e Separate variance interval The standard error estimate of Y, — Y5 is

" — (26.9)2 (18.4)2
Y,-Y,) = = 9.92.
(Y1 2) \/ 10 + 13 9.9

The degrees of freedom v is computed as the greatest integer less than or equal to

(M+M)2

10 13
((261.09)2)2 ((181.:)2)2 = 15.17,
10—-1 + 13-1

so v = 15. Finally, £15,0.95 = 1.7530. So a level 0.90 confidence interval for pu; — us is

(—16.5 — (9.92)(1.753), —16.5 + (9.92)(1.753))

= (—33.9,0.89).

There seems to be a problem here. The pooled variance interval, (—32.7,—0.3), does not
contain 0, and so suggests that uq # p2. On the other hand, the separate variance interval,
(—33.9,0.89), contains 0, and so suggests we cannot conclude that p; # p2. What to do?

Since both intervals are similar and have upper limits very close to 0, I would suggest taking

more data to resolve the ambiguity.

Comparing Two Population Proportions: The Approximate Score

Interval

Suppose there are two populations: population 1, in which a proportion p; have a certain charac-
teristic, population 2, in which a proportion p; have a certain (possibly different) characteristic.

We will use a sample of size n; from population 1, and ny from population 2 to estimate the



difference p; — p2. Specifically, if Y7 is the number having the population 1 characteristic in the n;

items in sample 1, and if if Y3 is the number having the population 2 characteristic in the ng items

in sample 2, then Y7 ~ b(n1,p1), and Y2 ~ b(nz,p2). The sample proportion having the population

1 characteristic is p; = Y1/n4, and the sample proportion having the population 2 characteristic

is pa = Y2 /na. A point estimator of p; — ps is then p1 — pa.

As with the one sample case, recent research suggests that an interval known as the approximate

score interval performs well for both large and small samples. Therefore, I will introduce it here

and ask you to use it in place of the large sample (Wald) interval presented in the text. For SAS

users, the macro bici computes the score interval (along with the exact, large-sample (Wald) and

yet another interval known as the bootstrap interval (presented in Chapter 11 of the text)).

Suppose the observed values of Y7 and Y; are y; and y2. To compute the approximate score

interval, first compute the adjusted estimates of p;:

PR 025244 1)/2
ni + 0.52(21+L)/2
and ps:
5, = 2022
ny + 0.52(21+L)/2

The approximate score interval for p; — p2 is then given by the formula:

. p1(1—p p2(1l —p
1 —pz:i:Z(1+L)/2\/pl( p1) + p2(1 — P2)

ni N2



Example 6:

In a recent survey on academic dishonesty 26 of the 200 female college students surveyed and 26 of
the 100 male college students surveyed agreed or strongly agreed with the statement “Under some
circumstances academic dishonesty is justified.” With 95% confidence estimate the difference in
the proportions ps of all female and p,, of all male college students who agree or strongly agree

with this statement.

Since zg.975 = 1.96, y; = 26, ny = 200, ¥, = 26, and n,, = 100, the adjusted estimates of p; and

Pm are
26 + 0.25 - 1.962
5, — o T U9 I g 335
Pr = 200+ 0.5- 1.962 ’
and
26 + 0.25 - 1.962
Gy = 204+025-1.96% e

100+ 0.5- 1.962

The approximate score interval for ps — py, is then

0.1335— 0.2645+

1‘96\/0.1335(1 —0.1335)  0.2645(1 — 0.2645)
200 100

= (—0.2295, —0.0325).

Tolerance Intervals

Tolerance intervals are used to give a range of values which, with a pre-specified confidence, will

contain at least a pre-specified proportion of the measurements in the population. Suppose 77 and



T, are estimators with 77 < T3, and that « is a real number between 0 and 1. Let A(Ty,T%,%)

denote the event

{The proportion of measurements in the population between Ti and T is at least v}.

Then a level L tolerance interval for a proportion v of a population is an interval (T, T2), where

T, and T3, are random variables, having the property that

P(A(Tl, Tz, ’y)) = L.

Normal Theory Tolerance Intervals

If we can assume the data are from a normal population, a level L tolerance interval for a proportion
v of the population is given by

Y + KS,

where Y and S are the sample mean and standard deviation, and K is a mathematically derived

constant depending on n, L and v (Found in Table A.8, p. 359 in the book).

Example 7:

Refer again to the grinding data. The mean diameter of the n = 150 parts is 0.7518 and the
standard deviation is 0.0048. For level 0.90 normal theory tolerance interval for a proportion 0.95

of the data, the constant K is obtained by simple interpolation to be 2.137. The interval is then

(0.7518 — (2.137)(0.0048), 0.7518 + (2.137)(0.0048))



= (0.7415, 0.7621).

What’s the ID EA"

Note how a tolerance interval differs from both a confidence interval (a range of plausible values for
a model parameter) and a prediction interval (a range of plausible values for a new observation):
A tolerance interval gives a range of values which plausibly contains a specified proportion of the

entire population.
Tolerance intervals are confusing at first, but the following way of thinking about them may help.

Suppose we use a sample of size n to construct a level L tolerance interval for a proportion v of a
population. Call this interval 1. Now think about taking an infinite number of samples, each of size
n, from the population. For each sample, we calculate a level L tolerance interval for a proportion
v of a population, using the same formula we used for interval 1. Number these intervals 2, 3, 4,
... A certain proportion of the population measurements will fall in each interval: let 7; denote
the proportion for interval i. Some of the «; will be greater than or equal to v, the minimum
proportion of the population measurements the interval is supposed to contain, and some will be

less. The proportion of all intervals for which «; > =, equals L, the confidence level.



