
Chapter 5: Introduction to Inference: Estimation and
Prediction



The PICTURE
In Chapters 1 and 2, we learned some basic methods for analyzing
the pattern of variation in a set of data. In Chapter 3, we learned
that in order to take statistics to the next level, we have to design
studies to answer specific questions. We also learned something
about designed studies. In Chapter 4, we learned about statistical
models and the mathematical language in which they are written:
probability.



We are now ready to move to the next level of statistical analysis:
statistical inference. Statistical inference uses a sample from a
population to draw conclusions about the entire population. The
material of Chapter 3 enables us to obtain the sample in a
statistically valid way. The models and probabilistic concepts of
Chapter 4 enable us to obtain valid inference and to quantify the
precision of the results obtained.



Preview:

I The models: C+E and binomial

I Types of inference: estimation, prediction, tolerance interval

I Estimation basics:

o Estimator or estimate?
o Sampling distributions
o Confidence intervals

I Estimation for the one population C+E model

I Prediction for the one population C+E model

I Estimation for the one population binomial model

I Determination of sample size

I Estimation for the two population C+E model

I Estimation for the two population binomial model

I Normal theory tolerance intervals



Statistical Inference:
Use of a subset of a population (the sample) to draw conclusions
about the entire population.
The validity of inference is related to the way the data are
obtained, and to the stationarity of the process producing the data.
For valid inference the units on which observations are made must
be obtained using a probability sample. The simplest probability
sample is a simple random sample (SRS).



The Models
We will study

I The C+E model
Y = µ + ε,

where µ is a model parameter representing the center of the
population, and ε is a random error term (hence the name
C+E).
Often, we assume that ε ∼ N(0, σ2), which implies
Y ∼ N(µ, σ2).

I The binomial model



The Data
Before they are obtained, the data are represented as independent
random variables, Y1,Y2, . . . ,Yn. After they are obtained, the
resulting values are denoted y1, y2, . . . , yn.



For the C+E model, the data are considered a random sample
from a population described by the C+E model (e.g, N(µ, σ2)).



The binomial model represents data from a population in which
the sampling units are observed as either having or not having a
certain characteristic. The proportion of the population having the
characteristic is p.



n sampling units are drawn randomly from the population. Yi

equals 1 if sampling unit i has the characteristic, and 0 otherwise.
Therefore, Y1,Y2, . . . ,Yn are independent b(1, p) (also known as
Bernoulli(p)) random variables. For the purpose of inference about
p, statistical theory says that we need only consider Y =

∑n
i=1 Yi ,

the total number of sampling units in the sample that have the
characteristic. In Chapter 4 we learned that Y ∼ b(n, p).



Types of Inference
I Estimation of model parameters

I Prediction of a future observation

I Tolerance interval



Point Estimation for µ in the C+E Model
I Least absolute errors finds m to minimize

SAE(m) =
n∑

i=1

|yi −m|.

For the C+E model, the least absolute errors estimator is the
sample median, Q2.

I Least squares finds m to minimize

SSE(m) =
n∑

i=1

(yi −m)2.

For the C+E model, the least squares estimator is the sample
mean, Y .
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Estimator or Estimate?
I The Randomness in a set of data from a designed study is in

the production of the data: measuring, sampling, treatment
assignment, etc.

I An estimator is a rule for computing a quantity from a
sample that is to be used to estimate a model parameter.

I An estimate is the value that rule gives when the data are
taken.



Estimation for the C+E Model: Sampling
Distributions
The distribution model of an estimator is called its sampling
distribution. For example, in the C+E model, the least squares
estimator Y , has a N(µ, σ2/n) distribution (its sampling
distribution):

I Exactly, if ε ∼ N(0, σ2)

I Approximately, if n is large enough. The CLT guarantees it!



One further bit of terminology: The standard deviation of the
sampling distribution of an estimator is called the standard error
of the estimator. So, the standard error of Y is σ/

√
n.



Confidence Intervals
A level L confidence interval for a parameter θ is an interval
(θ̂1, θ̂2), where θ̂1 and θ̂2 are estimators having the property that

P(θ̂1 < θ < θ̂2) = L.



Estimation for the C+E Model:
Confidence Interval for µ: Known Variance
Suppose we know σ2. Then if Y can be assumed to have a
N(µ, σ2/n) sampling distribution, we know that

Z =
(Y − µ)

σ/
√

n
=

√
n(Y − µ)

σ

has a N(0, 1) distribution.
Let zδ denote the δ quantile of the standard normal distribution:
i.e., if Z ∼ N(0, 1), then P(Z ≤ zδ) = δ. Then

L = P

(
z(1−L)/2 <

√
n(Y − µ)

σ
< z(1+L)/2

)

= P

(
Y − σ√

n
z(1+L)/2 < µ < Y − σ√

n
z(1−L)/2

)
.



Noting that
z 1−L

2
= −z 1+L

2
,

we obtain the formula for a level L confidence interval for µ:(
Y − σ√

n
z 1+L

2
,Y +

σ√
n
z 1+L

2

)
.

Denoting the standard error of Y , σ/
√

n, by σ(Y ), we have the
formula (

Y − σ(Y )z 1+L
2

,Y + σ(Y )z 1+L
2

)
.



Example 1:
A computer scientist is investigating the usefulness of a design
language in improving programming tasks. Twelve expert
programmers are asked to code a standard function in the
language, and the times taken to complete the task (in minutes)
are recorded. The data are:
17 16 21 14 18 24 16 14 21 23 13 18
We will assume these data were generated by the C+E model:

Y = µ + ε.

We first have a look at the data and check the assumption of
normality.



The point estimate of µ is y = 17.9167.
Suppose we know σ = 3.6296. Then

σ(Y ) =
σ√
n

=
3.6296√

12
= 1.0478,

and a 95% confidence interval for µ is(
Y − σ(Y )z0.975,Y + σ(Y )z0.975

)
= (17.9167− (1.0478)(1.96), 17.9167 + (1.0478)(1.96))

= (15.8630, 19.9704).

Based on these data, we estimate that µ lies in the interval
(15.8630,19.9704).



The Interpretation of Confidence Level
The confidence level, L, of a level L confidence interval for a
parameter θ is interpreted as follows: Consider all possible samples
that can be taken from the population described by θ and for each
sample imagine constructing a level L confidence interval for θ.
Then a proportion L of all the constructed intervals will really
contain θ.



Example 1, Continued:
Recall that based on a random sample of 12 programming times,
we computed a 95% confidence interval for µ, the mean
programming time for all programmers in the population from
which the sample was drawn. (15.8630,19.9704). We are 95%
confident in our conclusion, meaning that in repeated sampling,
95% of all intervals computed in this way will contain the true
value of µ.



Demo Time!



Recap:
Recall that we developed a confidence interval for the population
mean µ under the assumption that the population standard
deviation σ was known, by using the fact that

Y − µ

σ(Y )
∼ N(0, 1),

at least approximately, where Y is the sample mean and
σ(Y ) = σ/

√
n is its standard error.

The level L confidence interval we developed was(
Y − σ(Y )z 1+L

2
,Y + σ(Y )z 1+L

2

)
,

where z 1+L
2

is the (1 + L)/2 quantile of the N(0, 1) distribution.



Estimation for the C+E Model:
Confidence Interval for µ: Unkown Variance
If σ is unknown, estimate it using the sample standard deviation,
S . This means that instead of computing the exact standard error
of Y , we use the estimated standard error,

σ̂(Y ) =
S√
n
.

However, the resulting standardized estimator,

t =
Y − µ

σ̂(Y )
,

now has a tn−1, rather than a N(0, 1), distribution. The result is
that a level L confidence interval for µ is given by(

Y − σ̂(Y )tn−1, 1+L
2

,Y + σ̂(Y )tn−1, 1+L
2

)
.



Example 1, Continued:
Recall again the programming time example. In reality, we don’t
know σ, but we can estimate it using the sample standard
deviation, S .
For these data, n = 12 and s = 3.6296, which means that
σ̂(Y ) = 3.6296√

12
= 1.0478. In addition, tn−1, 1+L

2
= t11,0.975 = 2.2010,

so a level 0.95 confidence interval for µ is

= (17.9167− (1.0478)(2.2010), 17.9167 + (1.0478)(2.2010))

= (15.6105, 20.2228).

This interval is slightly wider than the previous interval, because it
must account for the additional uncertainty in estimating σ. This
is reflected in the larger value of t11,0.975 = 2.2010 compared with
z0.975 = 1.96.
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Prediction for the C+E Model
The problem is to use the sample to predict a new observation (i.e.
one that is not in the sample) from the C+E model. This is a very
different problem than estimating a model parameter, such as µ.



To see what is involved, call the new observation Ynew . We know
that Ynew = µ + εnew . Let Ŷnew denote a predictor of Ynew .
Suppose for now that we know µ. Then it can be shown that the
“best” predictor is Ŷnew = µ. However, even using this knowledge,
we will still have prediction error:

Ynew − Ŷnew = Ynew − µ = (µ + εnew )− µ = εnew .

The variance of prediction, σ2(Ynew − Ŷnew ), is therefore σ2, the
variance of the model’s error distribution.



We won’t know µ, however, so we use Y from the sample to
estimate it, giving the predictor Ŷnew = Y . The prediction error is
then

Ynew − Ŷnew = (µ + εnew )− Ŷnew = (µ− Ŷnew ) + εnew

= (µ− Y ) + εnew

µ− Y is the error due to using Y to estimate µ. Its variance, as
we have already seen, is σ2/n. εnew is the random error inherent in
Ynew . Its variance is σ2. Since these terms are independent, the
variance of their sum is the sum of their variances (see text, ch. 4):

σ2(Ynew − Ŷnew ) = σ2(µ− Ŷnew ) + σ2(εnew )

=
σ2

n
+ σ2

= σ2

[
1 +

1

n

]
.



In most applications σ will not be known, so we estimate it with
the sample standard deviation S , giving the estimated standard
error of prediction

σ̂(Ynew − Ŷnew ) = S

√
1 +

1

n
.

A level L prediction interval for a new observation is then

Ŷnew ± σ̂(Ynew − Ŷnew )tn−1, 1+L
2

.



Example 1, Continued:
We return to the programming time example. Recall that for these
data, y = 17.9167, so that the predicted value is
ŷnew = y = 17.9167. Also, n = 12 and s = 3.6296, which means
that

σ̂(Ynew − Ŷnew ) = 3.6296

√
1 +

1

12
= 3.77781.

In addition, tn−1, 1+L
2

= t11,0.975 = 2.2010, so a level 0.95 prediction

interval for the diameter of a new piece is:

(17.9167− (3.77781)(2.2010), 17.9167 + (3.77781)(2.2010))

= (9.60175, 26.2317).

Notice how much wider this is than the confidence interval we
obtained for µ: (15.6105,20.2228).



Interpretation of the Confidence Level for a
Prediction Interval
The interpretation of the level of confidence L for a prediction
interval is similar to that for a confidence interval: Consider all
possible samples that can be taken from the population, and for
each sample imagine constructing a level L prediction interval for a
new observation. Also, for each sample draw a ‘new’ observation
at random from among the remaining population values not in the
sample. Then a proportion L of all the constructed intervals will
really contain their ’new’ observation.



Demo Time!



What’s the IDEA?
When deciding between a confidence or prediction interval, ask
whether you are estimating a model parameter or predicting a new
observation:

A Confidence Interval is a range of plausible values for a model
parameter (such as the mean, or as we will see later,
a population proportion). Since the population
parameter is fixed, the only variation involved is the
variation in the data used to construct the interval.

A Prediction Interval is a range of plausible values for a new
observation (i.e., one not in the sample) selected at
random from the population. The prediction interval
is wider than the corresponding confidence interval
since, in addition to the variation in the sample, it
must account for the variation involved in obtaining
the new observation.
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Point Estimation of a Population Proportion
Example 2:
We’ll once again consider the grinding example from Chapter 4. In
order to determine the correctness of their suspicion that parts
tended to be ground larger than spec, management had 150 parts
sampled at random. If Y is the number of the 150 parts that
exceed spec, then Y ∼ b(150, p), where p is the population
proportion of parts that exceed spec.
A point estimate of p is then the sample proportion of parts
exceeding spec: p̂ = Y /150.
Recall that 93 of the 150 parts in the sample exceeded spec, giving
a point estimate p̂ = 93/150 = 0.62. So we estimate that 62% of
all parts exceed spec.



In general, if we sample n items from a population in which a
proportion p have a certain characteristic of interest, and if Y is
the number in the sample that have the characteristic, then
Y ∼ b(n, p). The point estimator of p is then the sample
proportion, p̂ = Y /n.



Interval Estimation of a Population Proportion
NOTE: Recent research on confidence intervals for a population
proportion p shows that an interval known as the score interval
gives superior performance to both the exact and large sample
intervals described in the text. Further, the same interval works for
both large and small samples.



The score interval has a rather complicated formula. The SAS
macro bici computes the score interval (along with the exact,
large-sample (Wald) and yet another interval known as the
bootstrap interval (presented in Chapter 11 of the text)).



However, there is an approximate score interval which performs
nearly as well as the score interval, and which has a simple
formula, and is therefore suitable for hand calculation.
The approximate score interval is just the large sample (or Wald)
interval (pp. 255-256 of the text) with the sample proportion
p̂ = Y /n replaced by an adjusted value p̃. The adjustment moves
p̂ closer to 0.5.
We present this approximate score interval below.



I will require that you use either the score interval or the
approximate score interval in homework and tests. More detailed
information on the score interval may be found on the course web
site under Other Resources. See the links for Revised Confidence
Interval Guide, The Score Interval for Population Proportions, and
Analysis Guide for Statistical Intervals.



The Approximate Score Interval
The level L approximate score interval for p is computed as follows:

1. Compute the adjusted estimate of p:

p̃ =
y + 0.5z2

(1+L)/2

n + z2
(1+L)/2

,

where y is the observed number of successes in the sample.

2. The approximate score interval is obtained by substituting p̃
for p̂ in the large sample confidence interval formula (found in
the text, p. 256):

p̃ ± σ̂(p̃)z(1+L)/2,

where

σ̂(p̃) =

√
p̃(1− p̃)

n
.



Example 2, Continued:
We’ll once again consider the grinding example from Chapter 4.
Recall that 150 parts were sampled at random and that 93 had
diameters greater than the specification diameter.
We will use these data to obtain a level 0.99 approximate score
confidence interval for p, the true population proportion of parts
with diameters greater than spec.



The approximate score interval is computed as follows: Since
L = 0.99, z(1+L)/2 = z0.995 = 2.5758. Using this in the formula, we
obtain

p̃ =
93 + (0.5)(2.57582)

150 + 2.57582
= 0.6149,

so the interval is

0.6149± 2.5758

√
0.6149(1− 0.6149)

150

= (0.51, 0.72)



Since the interval contains only values exceeding 0.5, we can
conclude with 99% confidence that more than half the population
diameters exceed spec.



TYU 25



What’s the IDEA?

All confidence intervals you will see in this chapter have the same
form:
ESTIMATOR ± MULTIPLIER ×
ESTIMATED STANDARD ERROR OF ESTIMATOR
The multiplier is based on the sampling distribution of the
estimator and the specified confidence level.



Determination of Sample Size
One consideration in designing an experiment or sampling study is
the precision desired in estimators or predictors. Precision of an
estimator is a measure of how variable that estimator is. Another
equivalent way of expressing precision is the width of a level L
confidence interval. For a given population, precision is a function
of the size of the sample: the larger the sample, the greater the
precision.



Suppose it is desired to estimate a population proportion p to
within d units with confidence level at least L. Assume also that
we will be using an approximate score interval. The requirement is
that one half the length of the confidence interval equal d , or

z 1+L
2

√
p̃(1− p̃)/n = d

Solving this equation for n gives the required sample size as

n = (p̃(1− p̃) · z2
1+L
2

)/d2

We can get an estimate of p̃ from a pilot experiment or study: use
the sample proportion p̂. Or, since p̃(1− p̃) ≤ .25, we can use .25
in place of p̃(1− p̃) in the formula.



There is an analogous formula when a simple random sample will
be used and it is desired to estimate a population mean µ to
within d units with confidence level at least L. If we assume the
population is normal, or if we have a large enough sample size (so
the normal approximation can be used in computing the confidence
interval), the required sample size is

n = (σ2 · z2
1+L
2

)/d2.

Again, this supposes we know σ2. If we don’t, we can get an
estimate from a pilot experiment or study.



Example 3:
Suppose we want to use a level 0.90 approximate score interval to
estimate to within 0.05 the proportion of voters who support
universal health insurance. A pilot survey of 100 voters finds 35
who support universal health insurance. For simplicity, we use the
sample proportion p̂ = 0.35 to estimate p̃. Then, since d = 0.05,
L = 0.90, and z 1+L

2
= z0.95 = 1.645, the necessary sample size is

n = (0.35(1− 0.35) · 1.6452)/0.052 = 246.24,

so we take n = 247.
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The Two Population C+E Model
We assume that there are n1 measurements from population 1
generated by the C+E model

Y1,i = µ1 + ε1,i , i = 1, . . . , n1,

and n2 measurements from population 2 generated by the C+E
model

Y2,i = µ2 + ε2,i , i = 1, . . . , n2.

We want to compare µ1 and µ2.



Estimation for Paired Comparisons
Sometimes each observation from population 1 is paired with
another observation from population 2. For example, we may want
to assess the gain in student knowledge after a course is taken. To
do so, we may give each student a pre-course and post-course test.
The two populations are then the pre-course and post-course
scores, and they are paired by student.
In this case n1 = n2 and by looking at the pairwise differences,
Di = Y1,i − Y2,i , we transform the two population problem to a
one population problem for C+E model D = µD + εD , where
µD = µ1 − µ2 and εD = ε1 − ε2. Therefore, a confidence interval
for µ1 − µ2 is obtained by constructing a one sample confidence
interval for µD .



Example 4:
Recall the data set from Example 1, which consisted of
programming times for 12 programmers using a particular design
language. These data were part of a more extensive study which
also obtained the times it took the same 12 programmers to
program the same function using a second design language. The
researcher wanted to compare the mean programming times in the
two design languages. To do so, he computed D, the difference
between the programmer’s programming time using language 1
and that using language 2. Assuming that these differences follow
a C+E model, he constructed a level 0.95 confidence interval for
the mean difference in programming time, µD . The data (found in
SASDATA.PROGRAM TIMES) are:



LANGUAGE
PROGRAMMER 1 2 DIFF

1 17 18 −1
2 16 14 2
3 21 19 2
4 14 11 3
5 18 23 −5
6 24 21 3
7 16 10 6
8 14 13 1
9 21 19 2
10 23 24 −1
11 13 15 −2
12 18 20 −2



An inspection of the differences shows no evidence of nonnormality
or outliers. For these data, d = 0.6667, sd = 2.9644 and
t11,0.975 = 2.201. Then σ̂(D) = 2.9644/

√
12 = 0.8558, so the

desired interval is

0.6667± (0.8558)(2.201) = (−1.2168, 2.5502).

Based on this, we estimate that the mean time to program the
function in question using design language 1 is between 2.5502
minutes greater than and 1.2168 minutes less than it takes using
design language 2. In particular, since the interval contains 0, we
are unable to conclude that there is a difference in mean
programming time.
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Estimation for Independent Populations
Let Y 1 and Y 2 denote the sample means from populations 1 and
2, S2

1 and S2
2 the sample variances. The point estimator of µ1 − µ2

is Y 1 − Y 2.



Equal Variances
If the population variances are equal (σ2

1 = σ2
2 = σ2), then we

estimate σ2 by the pooled variance estimator

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
.

The estimated standard error of Y 1 − Y 2 is then given by

σ̂p(Y 1 − Y 2) =

√
S2

p

(
1

n1
+

1

n2

)
.

t(p) =
Y 1 − Y 2 − (µ1 − µ2)

σ̂p(Y 1 − Y 2)

has a tn1+n2−2 distribution. This leads to a level L pooled variance
confidence interval for µ1 − µ2:

Y 1 − Y 2 ± σ̂p(Y 1 − Y 2)tn1+n2−2, 1+L
2



Unequal Variances
If σ2

1 6= σ2
2, an approximate level L confidence interval for µ1−µ2 is

Y 1 − Y 2 ± σ̂(Y 1 − Y 2)tν, 1+L
2

,

where ν is the largest integer less than or equal to(
S2

1
n1

+
S2

2
n2

)2

(
S2
1

n1

)2

n1−1 +

(
S2
2

n2

)2

n2−1

,

and

σ̂(Ȳ1 − Ȳ2) =

√
S2

1

n1
+

S2
2

n2
.



Example 5:
A company buys cutting blades used in its manufacturing process
from two suppliers. In order to decide if there is a difference in
blade life, the lifetimes of 10 blades from manufacturer 1 and 13
blades from manufacturer 2 used in the same application are
compared. A summary of the data shows the following (units are
hours):

Manufacturer n y s

1 10 118.4 26.9
2 13 134.9 18.4

The investigators generated histograms and normal quantile plots
of the two data sets and found no evidence of nonnormality or
outliers. The point estimate of µ1 − µ2 is
y1 − y2 = 118.4− 134.9 = −16.5. They decided to obtain a level
0.90 confidence interval to compare the mean lifetimes of blades
from the two manufacturers.



I Pooled variance interval The pooled variance estimate is

s2
p =

(10− 1)(26.9)2 + (13− 1)(18.4)2

10 + 13− 2
= 503.6.

This gives the estimate of the standard error of Y 1 − Y 2 as

σ̂p(Y 1 − Y 2) =

√
503.6

(
1

10
+

1

13

)
= 9.44.

Finally, t21,0.95 = 1.7207. So a level 0.90 confidence interval
for µ1 − µ2 is

(−16.5− (9.44)(1.7207), −16.5 + (9.44)(1.7207))

= (−32.7,−0.3).



I Separate variance interval The estimate of the standard error

of Y 1 − Y 2 is

σ̂(Y 1 − Y 2) =

√
(26.9)2

10
+

(18.4)2

13
= 9.92.

The degrees of freedom ν is computed as the greatest integer
less than or equal to(

(26.9)2

10 + (18.4)2

13

)2

(
(26.9)2

10

)2

10−1 +

(
(18.4)2

13

)2

13−1

= 15.17,

so ν = 15. Finally, t15,0.95 = 1.7530. So a level 0.90
confidence interval for µ1 − µ2 is

(−16.5− (9.92)(1.753), −16.5 + (9.92)(1.753))

= (−33.9, 0.89).



There seems to be a problem here. The pooled variance interval,
(−32.7,−0.3), does not contain 0, and so suggests that µ1 6= µ2.
On the other hand, the separate variance interval, (−33.9, 0.89),
contains 0, and so suggests we cannot conclude that µ1 6= µ2.
What to do?
Since both intervals are similar and have upper limits very close to
0, I would suggest taking more data to resolve the ambiguity.



Recap: Estimation of Difference in Means of
Two Independent Populations
We assume the measurements from the two populations are
generated by the C+E models

Y1,i = µ1 + ε1,i , i = 1, . . . , n1,

Y2,i = µ2 + ε2,i , i = 1, . . . , n2.

Let Y 1 and Y 2 denote the sample means from populations 1 and
2, S2

1 and S2
2 the sample variances. The point estimator of µ1 − µ2

is Y 1 − Y 2.



There are two cases:

Equal Variances A level L confidence interval for µ1 − µ2 is

Y 1 − Y 2 ± σ̂p(Y 1 − Y 2)tn1+n2−2, 1+L
2

,

where

σ̂p(Y 1 − Y 2) =

√
S2

p

(
1

n1
+

1

n2

)
is the estimated standard error of the point estimator
Y 1 − Y 2, and

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2

is the pooled variance estimator of the common
population variance σ2.



Unequal Variances A level L confidence interval for µ1 − µ2 is

Y 1 − Y 2 ± σ̂(Y 1 − Y 2)tν, 1+L
2

,

where ν is the largest integer less than or equal to(
S2

1
n1

+
S2

2
n2

)2

(
S2
1

n1

)2

n1−1 +

(
S2
2

n2

)2

n2−1

,

and

σ̂(Ȳ1 − Ȳ2) =

√
S2

1

n1
+

S2
2

n2

is the estimated standard error of the point estimator
Y 1 − Y 2.
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Comparing Two Population Proportions: The
Approximate Score Interval



Example 6:
In a recent survey on academic dishonesty simple random samples
of 200 female and 100 male college students were taken. 26 of
females and 26 of the males agreed or strongly agreed with the
statement “Under some circumstances academic dishonesty is
justified.” Researchers would like to compare the population
proportions, pf of all female and pm of all male college students
who agree or strongly agree with this statement.
We know that a point estimate of pf is the sample proportion
p̂f = 26/200 = 0.13, and a point estimate of pm is the sample
proportion p̂m = 26/100 = 0.26. Therefore it makes sense to
estimate the difference pf − pm with the difference in estimates
p̂f − p̂m = 0.13− 0.26 = −0.13.



The General Case
In general, suppose there are two populations: population 1, in
which a proportion p1 have a certain characteristic, and population
2, in which a proportion p2 have a certain (possibly different)
characteristic. We will use a sample of size n1 from population 1,
and n2 from population 2 to estimate the difference p1 − p2.



Specifically, if Y1 items in sample 1 and Y2 items in sample 2 have
the characteristic, then Y1 ∼ b(n1, p1), and Y2 ∼ b(n2, p2). The
sample proportion having the population 1 characteristic is
p̂1 = Y1/n1, and the sample proportion having the population 2
characteristic is p̂2 = Y2/n2. A point estimator of p1 − p2 is then
p̂1 − p̂2.



The Approximate Score Interval
As with the one sample case, recent research suggests that an
interval known as the approximate score interval performs well for
both large and small samples. Therefore, I will introduce it here
and ask you to use it in place of the large sample (Wald) interval
presented in the text. For SAS users, the macro bici computes the
score interval (along with the exact, large-sample (Wald) and yet
another interval known as the bootstrap interval (presented in
Chapter 11 of the text)).



Suppose the observed values of Y1 and Y2 are y1 and y2. To
compute the level L approximate score interval, first compute the
adjusted estimates of p1:

p̃1 =
y1 + 0.25z2

(1+L)/2

n1 + 0.5z2
(1+L)/2

,

and p2:

p̃2 =
y2 + 0.25z2

(1+L)/2

n2 + 0.5z2
(1+L)/2

,

The approximate score interval for p1 − p2 is then given by the
formula:

p̃1 − p̃2 ± z(1+L)/2

√
p̃1(1− p̃1)

n1
+

p̃2(1− p̃2)

n2



Example 6, Continued:
Recall the academic dishonesty survey in which 26 of the 200
female college students surveyed and 26 of the 100 male college
students surveyed agreed or strongly agreed with the statement
“Under some circumstances academic dishonesty is justified.”
With 95% confidence estimate the difference in the proportions pf

of all female and pm of all male college students who agree or
strongly agree with this statement.



Since z0.975 = 1.96, yf = 26, nf = 200, ym = 26, and nm = 100,
the adjusted estimates of pf and pm are

p̃f =
26 + 0.25 · 1.962

200 + 0.5 · 1.962
= 0.1335,

and

p̃m =
26 + 0.25 · 1.962

100 + 0.5 · 1.962
= 0.2645.

The approximate score interval for pf − pm is then

0.1335− 0.2645±

1.96

√
0.1335(1− 0.1335)

200
+

0.2645(1− 0.2645)

100

= (−0.2295,−0.0325).
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Tolerance Intervals
Tolerance intervals are used to give a range of values which, with a
pre-specified confidence, will contain at least a pre-specified
proportion of the measurements in the population.
Example 7:
Refer again to the programming time example, specifically the
times obtained using the first programming language. The
researchers want to obtain an interval that they are 90% confident
will contain 95% of all times in the population. This is called a
level 0.90 tolerance interval for a proportion 0.95 of the population
values.



Mathematical Description of Tolerance
Intervals
Suppose T1 and T2 are estimators with T1 ≤ T2, and that γ is a
real number between 0 and 1. Let A(T1,T2, γ) denote the event
{The proportion of measurements in the population between T1

and T2 is at least γ}.
Then the interval (T1, T2) is a level L tolerance interval for a
proportion γ of the population if

P(A(T1,T2, γ)) = L.



Normal Theory Tolerance Intervals
If we can assume the data are from a normal population, a level L
tolerance interval for a proportion γ of the population is given by

Y ± KS ,

where Y and S are the sample mean and standard deviation, and
K is a mathematically derived constant depending on n, L and γ
(Found in Table A.8, p. 913 in the book).



Example 7, Continued:
Refer again to the programming time example, specifically the
times obtained using the first programming language. The mean of
the n = 12 times is 17.9167, and the standard deviation is 3.6296.
We checked the data and found no evidence of nonnormality. For a
level 0.90 normal theory tolerance interval for a proportion 0.95 of
the data, the constant K is 2.863. The interval is then

(17.9167− (2.863)(3.6296), 17.9167 + (2.863)(3.6296))

= (7.5252, 28.3082).
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What’s the IDEA?

Note how a tolerance interval differs from both a confidence
interval (a range of plausible values for a model parameter) and a
prediction interval (a range of plausible values for a new
observation): A tolerance interval gives a range of values which
plausibly contains a specified proportion of the entire population.
Tolerance intervals are confusing at first, but the following way of
thinking about them may help.



Suppose we use a sample of size n to construct a level L tolerance
interval for a proportion γ of a population. Call this interval 1.
Now think about taking an infinite number of samples, each of size
n, from the population. For each sample, we calculate a level L
tolerance interval for a proportion γ of a population, using the
same formula we used for interval 1. Number these intervals 2, 3,
4, ... A certain proportion of the population measurements will fall
in each interval: let γi denote the proportion for interval i . Some
of the γi will be greater than or equal to γ, the minimum
proportion of the population measurements the interval is
supposed to contain, and some will be less. The proportion of all
intervals for which γi ≥ γ, equals L, the confidence level.



Demo Time!



Recap:

I The models: C+E and binomial

I Types of inference: estimation, prediction, tolerance interval

I Estimation basics:

o Estimator or estimate?
o Sampling distributions
o Confidence intervals

I Estimation for the one population C+E model

I Prediction for the one population C+E model

I Estimation for the one population binomial model

I Determination of sample size

I Estimation for the two population C+E model

I Estimation for the two population binomial model

I Normal theory tolerance intervals


