The One-Way Model

CHAPTER 9

THE ONE-WAY MODEL

9.4. (a) (8 points)) The table is

Analysis of Variance						
Source	DF	Sum of Squares	Mean Square	F Stat	Prob > F	
Treatment	6	1 .3 2	0.22	3.38	0.0207	
Blocks	3	2.28	0.76	11.69	0.0002	
Error	18	1.17	0.065			
C Total	27	4.77				

- (b) (6 points)) There are seven treatments.
- (c) (6 points)) There are four blocks.
- 9.6. (a) (5 points)) Randomize the order of the runs.
 - (b) (10 points)) Means model: $Y_{ij} = \mu_i + \epsilon_{ij}$, or effects model: $Y_{ij} = \mu + \tau_i + \epsilon_{ij}$. For the means model the estimates of the means are:

$$\hat{\mu}_1 = 600.21, \ \hat{\mu}_2 = 913.64, \ \hat{\mu}_3 = 1523.20, \ \hat{\mu}_4 = 478.31.$$

(c) (10 points)) Plots of the studentized residuals (Figure 1), reveal one possible outlier. Their distribution has a short upper tail compared with the normal distribution.

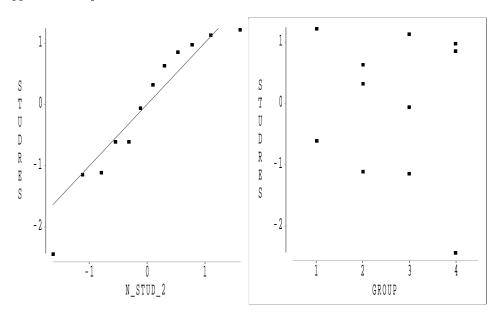


Figure 1: Studentized residual plots, 9.6(c)

(d) (10 points)) The ANOVA table is

Analysis of Variance						
Source	DF	Sum of Squares	Mean Square	F Stat	Prob > F	
Model	3	1.96×10^{6}	6.54×10^{5}	50	0.0001	
Error	8	1.05×10^{5}	13089			
C Total	11	$2.07 imes 10^6$				

The p-value of the F test is ≤ 0.0001 , indicating a highly significant difference in means. The means are ordered: 3 > 2 > 1 > 4. Level 0.95 Tukey intervals are

Comparison	$\operatorname{Interval}$
3-2	(310.42, 908.71)
3 - 1	(623.84, 1222.14)
3-4	(745.74, 1344.04)
2 - 1	(14.28, 612.57)
2-4	(136.18, 734.47)
1-4	(-177.25, 421.05)

From this we see that the mean of 3 is significantly larger than the other means, and the mean of 2 is significantly larger than that of 1 or 4. There are no differences among the other means.

- (e) (10 points)) The report should state:
 - (i) A one-way means model fit reasonably well (one possible outlier).
 - (ii) The F test revealed a significant difference in means for different configurations.
 - (iv) A Tukey multiple comparison test showed that the mean force under configuration 3 exceeded that under the other three configurations; that the force under configuration 2 exceeded that under configurations 1 and 4; and that the force under configurations 1 and 4 are not significantly different.

9.10. (10 points)) The one-way model

$$RMS_{ij} = \mu + SHAPE_i + \epsilon_{ij},$$

was fit. The MSE was 0.007, compared with 0.004 for the full data model in Exercise 9-9. Without the reduction in variation due to cams, the F test is no longer significant (p = 0.1497).