
Statistical Inference:
Recall from chapter 5 that statistical inference is the use of a
subset of a population (the sample) to draw conclusions about the
entire population. In chapter 5 we studied one kind of inference
called estimation. In this chapter, we study a second kind of
inference called hypothesis testing.
The validity of inference is related to the way the data are
obtained, and to the stationarity of the process producing the data.



The Components of a Statistical Hypothesis
Testing Problem

1. The Scientific Hypothesis

2. The Statistical Model

3. The Statistical Hypotheses

4. The Test Statistic

5. The P-Value



Example:
One stage of a manufacturing process involves a
manually-controlled grinding operation. Management suspects that
the grinding machine operators tend to grind parts slightly larger
rather than slightly smaller than the target diameter of 0.75 inches
while still staying within specification limits, which are 0.75 ± 0.01
inches. To verify their suspicions, they sample 150 within-spec
parts. We will use this example to illustrate the components of a
statistical hypothesis testing problem.



1. The Scientific Hypothesis The scientific hypothesis is the
hypothesized outcome of the experiment or study. In this
example, the scientific hypothesis is that there is a tendency
to grind the parts larger than the target diameter.

2. The Statistical Model We will assume these data were
generated by the C+E model:

Y = µ + ε,

where the random error, ε, follows a N(0, σ2) distribution
model.



3. The Statistical Hypotheses In terms of the C+E model,
management defined “a tendency to grind the parts larger
than the target diameter” to be a statement about the
population mean diameter, µ, of the ground parts. They then
defined the statistical hypotheses to be

H0 : µ = 0.75
Ha : µ > 0.75

Notice that Ha states the scientific hypothesis.



4. The Test Statistic In all one-parameter hypothesis test
settings we will consider, the test statistic will be the
estimator of the population parameter about which inference
is being made. As you know from chapter 5, the estimator of
µ is the sample mean, Y , and this is also the test statistic.
The observed value of Y for these data is y∗ = 0.7518.



5. The P-Value Think of this as the plausibility value. It
measures the probability, given that H0 is true, that a
randomly chosen value of the test statistic will give as much
or more evidence against H0 and in favor of Ha as does the
observed test statistic value.



For the grinding problem, since Ha states that µ > 0.75, large
values of Y will provide evidence against H0 and in favor of Ha.
Therefore any value of Y as large or larger than the observed value
y∗ = 0.7518 will provide as much or more evidence against H0 and
in favor of Ha as does the observed test statistic value. Thus, the
p-value is P0(Y ≥ 0.7518), where P0 is the probability computed
under the assumption that H0 is true: that is, µ = 0.75.



To calculate the p-value, we standardize the test statistic by
subtracting its mean (remember we’re assuming H0 is true, so we
take µ = 0.75) and dividing by its estimated standard error:

σ̂(Y ) = s/
√

n

= 0.0048/
√

150

= 0.0004.

If H0 is true, the result will have a tn−1 = t149 distribution.



Putting this all together, the p-value is

P0(Y ≥ 0.7518) =

P0

(
Y − 0.75

0.0004
≥ 0.7518− 0.75

0.0004

)
=

P(t149 ≥ 4.5) =

6.8× 10−6



What’s the Conclusion?
At this point, we have two options:

I Reject H0 in favor of Ha.

I Do not reject H0 in favor of Ha.



If the p-value is small enough, it indicates that, relative to Ha, the
data are not consistent with the assumption that H0 is true, so our
action would be to reject H0 in favor of Ha.



How small is “small enough” to reject H0 in favor of Ha? That
depends on a number of factors, such as the type of study, the
purposes of the study, and the number of hypothesis tests being
conducted. Table 1 gives guidelines for a single hypothesis test.



The evidence against
If the p-value H0 and in favor
is less than: of Ha is:

0.100 borderline
0.050 reasonably strong
0.025 strong
0.010 very strong

Table: Interpreting the strength of evidence against H0 and in favor of

Ha provided by p-values



Two-Sided Tests
In all examples we’ll look at, H0 will be simple (i.e. will state that
the parameter has a single value.) as opposed to compound.
Alternative hypotheses will be one-sided (that the parameter be
larger the null value, or smaller than the null value) or two-sided
(that the parameter not equal the null value).
In the grinding example, we had

H0 : µ = 0.75 ( simple)
Ha : µ > 0.75 ( compound, one-sided)



Suppose in the grinding problem that management wanted to see
if the mean diameter was off target. Then appropriate hypotheses
would be:

H0 : µ = 0.75 (simple)
Ha : µ 6= 0.75 (compound, two-sided)

In this case, evidence against H0 and in favor of Ha is provided by
both large and small values of Y .



To compute the p-value of the two-sided test, we first compute the
standardized test statistic t, and its observed value, t∗:

t =
Y − 0.75

0.0004
, t∗ =

0.7518− 0.75

0.0004
= 4.5.

Recall that under H0, t ∼ t149.



Because the test is two-sided, we compute the p-value as
P(|t| ≥ |t∗|) = P(t ≤ −|t∗|) + P(t ≥ |t∗|). By the symmetry of
the t distribution about 0, this equals 2P(t ≥ |t∗|). For the present
example, the p-value is P(|t| ≥ 4.5) = 2P(t ≥ 4.5) = 13.6× 10−6.



Here’s an easier way to compute the p-value for the two-sided test:
Let p+ = P(t ≥ t∗), and let p− = P(t ≤ t∗) = 1− p+. Then the
p-value for the two-sided test is p± = 2×min{p+, p−}. In our
example, p+ = P(t ≥ 4.5) = 6.8× 10−6,
p− = P(t ≤ 4.5) = 1− p+ = 0.9999932, so
p± = 2×min{6.8× 10−6, 0.9999932} = 13.6× 10−6.
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The Philosophy of Hypothesis Testing
Statistical hypothesis testing is modeled on scientific investigation.
The two hypotheses represent competing scientific hypotheses.

I The alternative hypothesis is the hypothesis that suggests
change, difference or an aspect of a new theory.

I The null hypothesis is the hypothesis that represents the
accepted scientific view or that, most often, suggests no
difference or effect.

For this reason the null hypothesis is given favored treatment.



Other Issues
I Statistical significance

Often, prior to conducting the study, users of hypothesis tests
set a pre-specified threshold level of evidence against the null
and in favor of the alternative hypothesis. In order to reject
H0 in favor of Ha, a p-value must fall below this threshold.
The name given to this threshold is “signifance level”, and it
is often denoted α.
If, for example, we decide to use a significance level of
α = 0.05, our action would be to reject H0 in favor of Ha if
the p-value is less than 0.05, and to not reject otherwise.



I Statistical significance and sample size
Statistical significance measures our ability to detect a
difference. As such, it is at least partly based on the amount
of data we have. For instance, recall the grinding example.
There were 150 parts having mean diameter 0.7518 and
standard deviation .0048. To test

H0 : µ = 0.75
Ha : µ 6= 0.75

we computed the p-value as



P0(Y ≥ 0.7518) =

P0

(√
150(Y − 0.75)

0.0048
≥
√

150(0.7518− 0.75)

0.0048

)
= P(t149 ≥ 4.5) = 6.8× 10−6



Now suppose that we had samples of sizes 10 and 50 with the same
mean and standard deviations. The corresponding p-values are:

P0(Y ≥ 0.7518) =

P0

(√
10(Y − 0.75)

0.0048
≥
√

10(0.7518− 0.75)

0.0048

)
= P(t9 ≥ 1.2) = 0.1330

and
P0(Y ≥ 0.7518) =

P0

(√
50(Y − 0.75)

0.0048
≥
√

50(0.7518− 0.75)

0.0048

)
= P(t49 ≥ 2.7) = 0.0054



I Statistical vs. practical significance
Statistical significance is used to decide if there is a difference.
It says nothing about practical significance: whether that
difference is important or not. In the example, we found that
a mean of 0.7518 inches for the 150 sampled parts provided
strong evidence that the population mean diameter was larger
than the target of 0.75. This result says nothing about
whether a difference on the order of 0.0018 inches makes any
real difference in product performance, manufacturing cost,
etc.



I Other Cautions

o Data suggesting hypotheses (Exploratory vs. confirmatory
studies)

o Lotsa tests means false positives
o Lack of significance 6= failure



One Sample Hypothesis Tests for the Mean in
the C+E Model
Check out Appendix 6.1, p. 346, with me!



One Sample Hypothesis Tests for a Population
Proportion
First, check out Appendix 6.1, p. 347, with me!



Example:
Here’s an example of how to do a two-sided exact test. A
manufacturer of high fiber cereal claims that its product Fibermax
is recommended by 2 out of 3 nutritionists. In a small (but
well-conducted) survey, 3 of a random sample of 6 nutritionists
recommended Fibermax.



I The Scientific Hypothesis Fibermax is not recommended by
2 out of 3 nutritionists.

I The Statistical Model Y , the number of the 6 nutritionists
surveyed who recommend Fibermax has a b(6, p) distribution.
(Here p is the proportion of all nutritionists who recommend
Fibermax).

I The Statistical Hypotheses

H0 : p = 0.667
Ha : p 6= 0.667

I The Test Statistic Y



I The P-Value This is the probability, given that H0 is true,
that a randomly chosen value of the test statistic will give as
much or more evidence against H0 and in favor of Ha as does
the observed test statistic value, y∗ = 3.



Under H0, Y , the number of a sample of 6 who recommend
Fibermax, has a b(6, 0.667) distribution, so its pmf is

pY (y) =

(
6
y

)
0.667y (1− 0.667)6−y , y = 0, 1, . . . , 6.

Evaluating, we find the pmf:



y pY (y) y pY (y)

0 0.001364 4 0.329218
1 0.016387 5 0.263770
2 0.082058 6 0.088055
3 0.219149

The observed value of Y is y∗ = 3. The p value is the sum of all
pY (y) values that are less than or equal to
pY (y∗) = pY (3) = 0.219149: That is,
pY (0) + pY (1) + pY (2) + pY (3) + pY (6) = 0.4070



You may want to compare this with how the p value would be
computed for a one-sided test. If, for example, the alternative
hypothesis was p < 0.667, the p value would be P0(Y ≤ y∗) =
P0(Y ≤ 3) = pY (0) + pY (1) + pY (2) + pY (3) = 0.3190.



Example: Large Sample Test for a Proportion
Back at the grinding operation, management has decided on
another characterization of the scientific hypothesis that “there is
a tendency to grind the parts larger than the target diameter.”
They decide to make inference about p, the population proportion
of in-spec parts with diameters larger than the target value. The
scientific hypothesis then becomes: “The population proportion
of in-spec parts with diameters larger than the target value is
greater than 1/2.”



The datum is Y , the number of the 150 sampled parts with
diameters larger than the target value. If we assume each part
represents a Bernoulli trial (independent, two possible outcomes:
diameter larger than target or not, and probability p of being larger
than target), we get the statistical model: Y ∼ b(150, p).



The statistical hypotheses are

H0 : p = 0.5
Ha : p > 0.5



The test statistic is Y , the number of the 150 sampled parts with
diameters larger than the target value.
Of the 150 parts, y∗ (the observed value of Y ) equals 93 (a
proportion 0.62).
We will first perform an exact test of these hypotheses. Under H0,
Y ∼ b(150, 0.5), so the p-value is

p+ = P(b(150, 0.5) ≥ 93) = 0.0021.



Now, for illustration, we will use the large-sample test. This is
valid since np0 and n(1− p0) both equal 75 > 10.
The observed standardized continuity-corrected test statistic is

z∗u =
93− (0.5)(150)− 0.5√

(150)(0.5)(1− 0.5)
= 2.858.

The approximate p-value is then

P(N(0, 1) ≥ 2.858) = 0.0021.
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The Two Population C+E Model
We assume that there are n1 measurements from population 1
generated by the C+E model

Y1,i = µ1 + ε1,i , i = 1, . . . , n1,

and n2 measurements from population 2 generated by the C+E
model

Y2,i = µ2 + ε2,i , i = 1, . . . , n2.

We want to compare µ1 and µ2.



Hypothesis Test for Paired Comparisons
Sometimes each observation from population 1 is paired with
another observation from population 2. For example, each student
may take a pre- and post-test. In this case n1 = n2 and by looking
at the pairwise differences, Di = Y1,i − Y2,i , we transform the two
population problem to a one population problem for C+E model
D = µD + εD , where µD = µ1 − µ2 and εD = ε1 − ε2. Therefore,
an hypothesis test for the difference µ1 − µ2 is obtained by
performing a one sample hypothesis test for µD based on the
differences Di .



Example:
The manufacturer of a new warmup bat thinks its product is
effective in raising batting averages. To test if this is true, it
selects a random sample of 12 baseball players from among a
larger number who volunteer to try the bat, and who have never
used it before. The players use the warmup bat for a season, and
company researchers obtain as data the batting averages from this
season and the previous (pre-bat) season.



1. The Scientific Hypothesis Batting averages are higher when
players use the bat.

2. The Statistical Model The paired C+E model: If Di is the
difference between this season’s and last season’s batting
average for player i , we assume Di = µD + εi , where the
random errors, εi , are independent and follow a N(0, σ2)
distribution model.

3. The Statistical Hypotheses

H0 : µD = 0
Ha : µD > 0



4. The Test Statistic The standardized test statistic is

t =
D

σ̂(D)
,

where

σ̂(D) =
SD√

n

is the estimated standard error of D, and n = 12.
Under H0, t follows a t11 distribution model.



The data (found in SASDATA.BATTING) are:

PLAYER AVG92 AVG93 D

1 0.254 0.262 0.008
2 0.274 0.290 0.016
3 0.300 0.304 0.004
4 0.246 0.267 0.021
5 0.278 0.291 0.013
6 0.252 0.257 0.005
7 0.235 0.248 0.013
8 0.313 0.324 0.021
9 0.305 0.317 0.012
10 0.255 0.252 −0.003
11 0.244 0.276 0.032
12 0.322 0.332 0.010



An inspection of the differences shows no evidence of nonnormality
or outliers, so we proceed with the test. For these data,
d = 0.0127, and sd = 0.0092. Then
σ̂(D) = 0.0092/

√
12 = 0.0027, so the observed value of the

standardized test statistic is

t∗ =
0.0127

0.0027
= 4.70,



5. The P-Value The p-value is

P(t11 ≥ 4.7) = 0.0006.



Testing Differences in Population Means of
Independent Populations
Let Y 1 and Y 2 denote the sample means from populations 1 and
2, S2

1 and S2
2 the sample variances. The point estimator of

µ1 − µ2, is Y 1 − Y 2. We will test

H0 : µ1 − µ2 = δ0

Versus one of
Ha− : µ1 − µ2 < δ0,
Ha+ : µ1 − µ2 < δ0,
Ha± : µ1 − µ2 6= δ0,

where δ0 is a specified value.



Equal Variances
If the population variances are equal (σ2

1 = σ2
2 = σ2), then we

estimate σ2 by the pooled variance estimator

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
.

The estimated standard error of Y 1 − Y 2 is then given by

σ̂p(Y 1 − Y 2) =

√
S2

p

(
1

n1
+

1

n2

)
.

Then, if H0 is true,

t(p) =
Y 1 − Y 2 − δ0

σ̂p(Y 1 − Y 2)

has a tn1+n2−2 distribution.



Suppose t(p)∗ is the observed value of t(p). Then the p-value of
the test of H0 versus Ha− is

p− = P(tn1+n2−2 ≤ t(p)∗),

versus Ha+ is
p+ = P(tn1+n2−2 ≥ t(p)∗),

and versus Ha± is
p± = 2min(p−, p+).



Unequal Variances
If σ2

1 6= σ2
2, then the standardized test statistic

t(ap) =
Y 1 − Y 2 − δ0

σ̂(Y 1 − Y 2)
.

approximately follows a tν distribution model, where ν is the
largest integer less than or equal to(

S2
1

n1
+

S2
2

n2

)2

(
S2
1

n1

)2

n1−1 +

(
S2
2

n2

)2

n2−1

,

and

σ̂(Ȳ1 − Ȳ2) =

√
S2

1

n1
+

S2
2

n2
.



If t(ap)∗ denotes the observed value of t(ap), the p-values for H0

versus Ha− , Ha+ and Ha±, respectively, are p− = P(tν ≤ t(ap)∗),
p+ = P(tν ≥ t(ap)∗) and p± = 2min(p−, p+).



Example:
A company buys cutting blades used in its manufacturing process
from two suppliers. In order to decide if there is a difference in
blade life, the lifetimes of 10 blades from manufacturer 1 and 13
blades from manufacturer 2 used in the same application are
compared. A summary of the data shows the following (units are
hours): (The data are in SASDATA.BLADE2)

Manufacturer n y s

1 10 118.4 26.9
2 13 134.9 18.4



The experimenters generated histograms and normal quantile plots
of the two data sets and found no evidence of nonnormality or
outliers. The estimate of µ1 − µ2 is
y1 − y2 = 118.4− 134.9 = −16.5.



1. The Scientific Hypothesis There is a difference in the
lifetimes of blades from the two manufacturers.

2. The Statistical Model The two population C+E model. For
illustration, we will consider both the equal-variance and
general case.

3. The Statistical Hypotheses

H0 : µ1 − µ2 = 0
Ha : µ1 − µ2 6= 0

To calculate the test statistic and p-value, we will consider
separately the two cases: equal variances and unequal variances.



Equal Variances

4. The Test Statistic
The pooled variance estimate is

s2
p =

(10− 1)(26.9)2 + (13− 1)(18.4)2

10 + 13− 2
= 503.6,

So the standard error estimate of Y 1 − Y 2 is

σ̂p(Y 1 − Y 2) =

√
503.6

(
1

10
+

1

13

)
= 9.44.

Therefore, t(p)∗ = −16.5/9.44 = −1.75, with 10+13-2=21
degrees of freedom.



5. The p-value p− = P(t21 ≤ −1.75) = 0.0473,
p+ = P(t21 ≥ −1.75) = 0.9527, and the p-value for this
problem is 2 min(0.0473, 0.9527) = 0.0946.



Unequal Variances

4. The Test Statistic
The standard error estimate of Y 1 − Y 2 is

σ̂(Y 1 − Y 2) =

√
(26.9)2

10
+

(18.4)2

13
= 9.92.

The observed value of the standardized test statistic is
t(ap)∗ = −16.5/9.92 = −1.67. The degrees of freedom ν is
computed as the greatest integer less than or equal to(

(26.9)2

10 + (18.4)2

13

)2

(
(26.9)2

10

)2

10−1 +

(
(18.4)2

13

)2

13−1

= 15.17,

so ν = 15.



5. The P-Value
p− = P(t15 ≤ −1.67) = 0.0583,
p+ = P(t15 ≥ −1.67) = 0.9417, and the p-value for this
problem is
2 min(0.0583, 0.9417) = 0.1166.

The results for the two t-tests are not much different.



The Large Sample Case
If n1 and n2 are large (for most cases, 100 will qualify as large),
you may base the test on the statistic used in the unequal
variances case:

t(ap) =
Y 1 − Y 2 − δ0

σ̂(Y 1 − Y 2)
.

Under H0, t(ap) ·∼ N(0, 1), so you may use the standard normal
distribution to compute the p-value (which means you don’t have
to do that nasty degrees of freedom calculation.)
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Comparing Two Population Proportions
Y1 ∼ b(n1, p1) and Y2 ∼ b(n2, p2) are observations from two
independent populations. The estimator of p1 − p2 is

p̂1 − p̂2 =
Y1

n1
− Y2

n2
.



We wish to test a null hypothesis that the two population
proportions differ by a known amount δ0,

H0 : p1 − p2 = δ0,

against one of three possible alternative hypotheses:

Ha+ : p1 − p2 > δ0

Ha− : p1 − p2 < δ0

Ha± : p1 − p2 6= δ0



The tests we will present rely on the normal approximation
promised by the Central Limit Theorem. Therefore, you should
always check that the sample sizes are large enough to justify this
approximation. yi ≥ 10 and ni − yi ≥ 10, i = 1, 2, suffices as a rule
of thumb.



Case 1: δ0 = 0
Suppose H0 is p1 − p2 = 0. Then, let p = p1 = p2 denote the
common value of the two population proportions. If H0 is true, the
variance of p̂1 equals p(1− p)/n1 and that of p̂2 equals
p(1− p)/n2. This implies the standard error of p̂1 − p̂2 equals√

p(1− p)

n1
+

p(1− p)

n2
.

Since we don’t know p, we estimate it using the data from both
populations:

p̂ =
Y1 + Y2

n1 + n2
.



The estimated standard error of p̂1 − p̂2 is then

σ̂0(p̂1 − p̂2) =

√
p̂(1− p̂)

n1
+

p̂(1− p̂)

n2

=

√
p̂(1− p̂)

(
1

n1
+

1

n2

)
,

and the standardized test statistic is then

Z0 =
p̂1 − p̂2

σ̂0(p̂1 − p̂2)
.

which has approximately a N(0, 1) distribution if H0 is true.



Case 2: δ0 6= 0
If δ0 6= 0, the (by now) standard reasoning gives the standardized
test statistic

Z =
p̂1 − p̂2 − δ0

σ̂(p̂1 − p̂2)
,

where

σ̂(p̂1 − p̂2) =

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2

is the estimated standard error of p̂1 − p̂2.



Example:
In a recent survey on academic dishonesty 24 of the 200 female
college students surveyed and 26 of the 100 male college students
surveyed agreed or strongly agreed with the statement “Under
some circumstances academic dishonesty is justified.” Suppose pf

denotes the proportion of all female and pm the proportion of all
male college students who agree or strongly agree with this
statement.



To illustrate the calculation of the two possible test statistics, we
will consider two different scientific hypotheses:

1. Scientific Hypothesis 1: There is a difference in the
population proportions of male and female students who agree
or strongly agree with the statement.

2. Scientific Hypothesis 2: The population proportion of males
who agree or strongly agree with the statement is at least 0.1
greater than the population proportion of females who agree
or strongly agree with the statement.



1. Scientific Hypothesis 1 There is a difference in the
population proportions of male and female students who agree
or strongly agree with the statement.

2. The Statistical Model The two-population binomial.

3. The Statistical Hypotheses

H0 : pf − pm = 0
Ha : pf − pm 6= 0



4. The Test Statistic The point estimate of pf − pm is

p̂f − p̂m = 24/200− 26/100 = −0.140,

and the estimate of the common value of pf and pm under H0

is p̂ = (26 + 24)/(200 + 100) = 0.167.
Thus,

σ̂0(p̂f − p̂m) =√
(0.167)(0.833)

(
1

200
+

1

100

)
=

0.046,

and

z∗ =
−0.140

0.046
= −3.04.



5. The P-Value Since Yf = 24, 200− Yf = 176, Ym = 26, and
100− Ym = 74 all exceed 10, we may use the normal
approximation: p+ = P(N(0, 1) ≥ −3.04) = 0.0012,
p− = P(N(0, 1) ≤ −3.04) = 0.9988, and
p± = 2min(0.9988, 0.0012) = 0.0024, this last being the
p-value we want.



1. Scientific Hypothesis 2 The population proportion of males
who agree or strongly agree with the statement is at least 0.1
greater than the population proportion of females who agree
or strongly agree with the statement.

2. The Statistical Model The two-population binomial.

3. The Statistical Hypotheses

H0 : pf − pm = −0.10
Ha : pf − pm < −0.10



4. The Test Statistic The estimated standard error of pf − pm

is

σ̂(p̂1 − p̂2) =√
0.12(1− 0.12)

200
+

0.26(1− 0.26)

100
=

0.05,

which gives

z∗ =
24/200− 26/100− (−0.10)

0.05
= −0.80,

5. The P-Value P(N(0, 1) ≤ −0.80) = 0.2119.
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Fixed Significance Level Tests
Steps, illustrated using grinding example:

1. Specify hypotheses to be tested.

H0 : µ = 0.75
Ha : µ > 0.75

(i.e. µ0 = 0.75)

2. Set the significance level α. Usual choices are 0.01 or 0.05.
We’ll choose the latter.



3. Specify the (standardized) test statistic and it’s
distribution under H0. For simplicity, assume we know
σ = 0.0048. Then the standardized test statistic is

Z =
Y − µ0

σ/
√

n
=

Y − 0.75

0.0048/
√

150
,

and under H0 it has a N(0, 1) distribution.



4. Find the critical region of the test. The critical region of
the test is the set of values of the (standardized) test statistic
for which H0 will be rejected in favor of Ha. Here, Ha tells us
that the critical region has the form

[zα,∞) = [z0.05,∞) = [1.645,∞),

meaning H0 will be rejected if and only if the observed value
of Z is greater than or equal to 1.645.



5. Perform the test. The observed value of Z is

z∗ =
0.7518− 0.75

0.0048/
√

150
= 4.5,

which falls in the critical region, so H0 is rejected in favor of
Ha.



Power In a fixed significance level test, power is the probability
of rejecting H0 in favor of Ha. Power will vary for different values
of the parameter being tested, so it is written as a function of that
parameter.
In the grinding example, the power is



Π(µ) = P(Z ≥ 1.645|µ)

= P

(
Y − 0.75

0.0048/
√

150
≥ 1.645|µ

)
= P(Y ≥ 0.75 + (1.645)

0.0048√
150

|µ)

= P(Z ′ ≥ 1.645 +
0.75− µ

0.0048/
√

150
),

where Z ′ = Z−µ
σ/
√

n
∼ N(0, 1).



The relation between hypothesis tests and
confidence intervals


