
• Statistical Inference:
Recall from chapter 5 that statistical inference is the use of a subset of a
population (the sample) to draw conclusions about the entire population.
In chapter 5 we studied one kind of inference called estimation. In this
chapter, we study a second kind of inference called hypothesis testing.

The validity of inference is related to the way the data are obtained, and
to the stationarity of the process producing the data.

• The Components of a Statistical Hypothesis
Testing Problem

1. The Scientific Hypothesis

2. The Statistical Model

3. The Statistical Hypotheses

4. The Test Statistic

5. The P-Value

• Example:
One stage of a manufacturing process involves a manually-controlled grind-
ing operation. Management suspects that the grinding machine operators
tend to grind parts slightly larger rather than slightly smaller than the tar-
get diameter of 0.75 inches while still staying within specification limits,
which are 0.75 ± 0.01 inches. To verify their suspicions, they sample 150
within-spec parts. We will use this example to illustrate the components
of a statistical hypothesis testing problem.

1. The Scientific Hypothesis The scientific hypothesis is the hypoth-
esized outcome of the experiment or study. In this example, the sci-
entific hypothesis is that there is a tendency to grind the parts larger
than the target diameter.

2. The Statistical Model We will assume these data were generated
by the C+E model:

Y = µ + ε,

where the random error, ε, follows a N(0, σ2) distribution model.

3. The Statistical Hypotheses In terms of the C+E model, manage-
ment defined “a tendency to grind the parts larger than the target
diameter” to be a statement about the population mean diameter,
µ, of the ground parts. They then defined the statistical hypotheses
to be

H0 : µ = 0.75
Ha : µ > 0.75

Notice that Ha states the scientific hypothesis.
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4. The Test Statistic In all one-parameter hypothesis test settings we
will consider, the test statistic will be the estimator of the population
parameter about which inference is being made. As you know from
chapter 5, the estimator of µ is the sample mean, Y , and this is
also the test statistic. The observed value of Y for these data is
y∗ = 0.7518.

5. The P-Value Think of this as the plausibility value. It measures
the probability, given that H0 is true, that a randomly chosen value
of the test statistic will give as much or more evidence against H0

and in favor of Ha as does the observed test statistic value.

For the grinding problem, since Ha states that µ > 0.75, large values of
Y will provide evidence against H0 and in favor of Ha. Therefore any
value of Y as large or larger than the observed value y∗ = 0.7518 will
provide as much or more evidence against H0 and in favor of Ha as does
the observed test statistic value. Thus, the p-value is P0(Y ≥ 0.7518),
where P0 is the probability computed under the assumption that H0 is
true: that is, µ = 0.75.

To calculate the p-value, we standardize the test statistic by subtracting
its mean (remember we’re assuming H0 is true, so we take µ = 0.75) and
dividing by its estimated standard error:

σ̂(Y ) = s/
√

n

= 0.0048/
√

150
= 0.0004.

If H0 is true, the result will have a tn−1 = t149 distribution.

Putting this all together, the p-value is

P0(Y ≥ 0.7518) =

P0

(
Y − 0.75
0.0004

≥ 0.7518− 0.75
0.0004

)
=

P (t149 ≥ 4.5) =
6.8× 10−6 .

• What’s the Conclusion?
At this point, we have two options:

– Reject H0 in favor of Ha.

– Do not reject H0 in favor of Ha.

If the p-value is small enough, it indicates that, relative to Ha, the data are
not consistent with the assumption that H0 is true, so our action would
be to reject H0 in favor of Ha.
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How small is “small enough” to reject H0 in favor of Ha? That depends
on a number of factors, such as the type of study, the purposes of the
study, and the number of hypothesis tests being conducted. Table 1 gives
guidelines for a single hypothesis test.

The evidence against
If the p-value H0 and in favor
is less than: of Ha is:
0.100 borderline
0.050 reasonably strong
0.025 strong
0.010 very strong

Table 1: Interpreting the strength of evidence against H0 and in favor of Ha

provided by p-values

• Two-Sided Tests
In all examples we’ll look at, H0 will be simple (i.e. will state that
the parameter has a single value.) as opposed to compound. Alternative
hypotheses will be one-sided (that the parameter be larger the null value,
or smaller than the null value) or two-sided (that the parameter not equal
the null value).

In the grinding example, we had

H0 : µ = 0.75 ( simple)
Ha : µ > 0.75 ( compound, one-sided)

Suppose in the grinding problem that management wanted to see if the
mean diameter was off target. Then appropriate hypotheses would be:

H0 : µ = 0.75 (simple)
Ha : µ 6= 0.75 (compound, two-sided)

In this case, evidence against H0 and in favor of Ha is provided by both
large and small values of Y .

To compute the p-value of the two-sided test, we first compute the stan-
dardized test statistic t, and its observed value, t∗:

t =
Y − 0.75
0.0004

, t∗ =
0.7518− 0.75

0.0004
= 4.5.

Recall that under H0, t ∼ t149.

Because the test is two-sided, we compute the p-value as P (|t| ≥ |t∗|) =
P (t ≤ −|t∗|)+P (t ≥ |t∗|). By the symmetry of the t distribution about 0,
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this equals 2P (t ≥ |t∗|). For the present example, the p-value is P (|t| ≥
4.5) = 2P (t ≥ 4.5) = 13.6× 10−6.

Here’s an easier way to compute the p-value for the two-sided test:

Let p+ = P (t ≥ t∗), and let p− = P (t ≤ t∗) = 1 − p+. Then the p-
value for the two-sided test is p± = 2 × min{p+, p−}. In our example,
p+ = P (t ≥ 4.5) = 6.8× 10−6, p− = P (t ≤ 4.5) = 1− p+ = 0.9999932, so
p± = 2×min{6.8× 10−6, 0.9999932} = 13.6× 10−6.

• The Philosophy of Hypothesis Testing
Statistical hypothesis testing is modeled on scientific investigation. The
two hypotheses represent competing scientific hypotheses.

– The alternative hypothesis is the hypothesis that suggests change,
difference or an aspect of a new theory.

– The null hypothesis is the hypothesis that represents the accepted
scientific view or that, most often, suggests no difference or effect.

For this reason the null hypothesis is given favored treatment.

• Other Issues

– Statistical significance
Often, prior to conducting the study, users of hypothesis tests set a
pre-specified threshold level of evidence against the null and in favor
of the alternative hypothesis. In order to reject H0 in favor of Ha,
a p-value must fall below this threshold. The name given to this
threshold is “signifance level”, and it is often denoted α.
If, for example, we decide to use a significance level of α = 0.05, our
action would be to reject H0 in favor of Ha if the p-value is less than
0.05, and to not reject otherwise.

– Statistical significance and sample size
Statistical significance measures our ability to detect a difference. As
such, it is at least partly based on the amount of data we have. For
instance, recall the grinding example. There were 150 parts having
mean diameter 0.7518 and standard deviation .0048. To test

H0 : µ = 0.75
Ha : µ 6= 0.75

we computed the p-value as

P0(Y ≥ 0.7518) =

P0

(√
150(Y − 0.75)

0.0048
≥
√

150(0.7518− 0.75)
0.0048

)

4



= P (t149 ≥ 4.5) = 6.8× 10−6

Now suppose that we had samples of sizes 10 and 50 with the same mean
and standard deviations. The corresponding p-values are:

P0(Y ≥ 0.7518) =

P0

(√
10(Y − 0.75)

0.0048
≥
√

10(0.7518− 0.75)
0.0048

)
= P (t9 ≥ 1.2) = 0.1330

and
P0(Y ≥ 0.7518) =

P0

(√
50(Y − 0.75)

0.0048
≥
√

50(0.7518− 0.75)
0.0048

)
= P (t49 ≥ 2.7) = 0.0054

– Statistical vs. practical significance
Statistical significance is used to decide if there is a difference. It
says nothing about practical significance: whether that difference is
important or not. In the example, we found that a mean of 0.7518
inches for the 150 sampled parts provided strong evidence that the
population mean diameter was larger than the target of 0.75. This
result says nothing about whether a difference on the order of 0.0018
inches makes any real difference in product performance, manufac-
turing cost, etc.

– Other Cautions

o Data suggesting hypotheses (Exploratory vs. confirmatory stud-
ies)

o Lotsa tests means false positives
o Lack of significance 6= failure

• One Sample Hypothesis Tests for the Mean in
the C+E Model
Check out Appendix 6.1, p. 346, with me!

• One Sample Hypothesis Tests for a Popula-
tion Proportion
First, check out Appendix 6.1, p. 347, with me!
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• Example:
Here’s an example of how to do a two-sided exact test. A manufacturer
of high fiber cereal claims that its product Fibermax is recommended by
2 out of 3 nutritionists. In a small (but well-conducted) survey, 3 of a
random sample of 6 nutritionists recommended Fibermax.

– The Scientific Hypothesis Fibermax is not recommended by 2 out
of 3 nutritionists.

– The Statistical Model Y , the number of the 6 nutritionists sur-
veyed who recommend Fibermax has a b(6, p) distribution. (Here p
is the proportion of all nutritionists who recommend Fibermax).

– The Statistical Hypotheses

H0 : p = 0.667
Ha : p 6= 0.667

– The Test Statistic Y

– The P-Value This is the probability, given that H0 is true, that a
randomly chosen value of the test statistic will give as much or more
evidence against H0 and in favor of Ha as does the observed test
statistic value, y∗ = 3.

Under H0, Y , the number of a sample of 6 who recommend Fibermax, has
a b(6, 0.667) distribution, so its pmf is

pY (y) =
(

6
y

)
0.667y(1− 0.667)6−y, y = 0, 1, . . . , 6.

Evaluating, we find the pmf:

y pY (y) y pY (y)
0 0.001364 4 0.329218
1 0.016387 5 0.263770
2 0.082058 6 0.088055
3 0.219149

The observed value of Y is y∗ = 3. The p value is the sum of all pY (y)
values that are less than or equal to pY (y∗) = pY (3) = 0.219149: That is,
pY (0) + pY (1) + pY (2) + pY (3) + pY (6) = 0.4070

You may want to compare this with how the p value would be computed for
a one-sided test. If, for example, the alternative hypothesis was p < 0.667,
the p value would be P0(Y ≤ y∗) = P0(Y ≤ 3) = pY (0)+ pY (1)+ pY (2)+
pY (3) = 0.3190.
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• Example: Large Sample Test for a Proportion
Back at the grinding operation, management has decided on another char-
acterization of the scientific hypothesis that “there is a tendency to grind
the parts larger than the target diameter.” They decide to make infer-
ence about p, the population proportion of in-spec parts with diameters
larger than the target value. The scientific hypothesis then becomes:
“The population proportion of in-spec parts with diameters larger than
the target value is greater than 1/2.”
The datum is Y , the number of the 150 sampled parts with diameters
larger than the target value. If we assume each part represents a Bernoulli
trial (independent, two possible outcomes: diameter larger than target or
not, and probability p of being larger than target), we get the statistical
model: Y ∼ b(150, p).
The statistical hypotheses are

H0 : p = 0.5
Ha : p > 0.5

The test statistic is Y , the number of the 150 sampled parts with diam-
eters larger than the target value.
Of the 150 parts, y∗ (the observed value of Y ) equals 93 (a proportion
0.62).
We will first perform an exact test of these hypotheses. Under H0, Y ∼
b(150, 0.5), so the p-value is

p+ = P (b(150, 0.5) ≥ 93) = 0.0021.

Now, for illustration, we will use the large-sample test. This is valid since
np0 and n(1− p0) both equal 75 > 10.
The observed standardized continuity-corrected test statistic is

z∗u =
93− (0.5)(150)− 0.5√

(150)(0.5)(1− 0.5)
= 2.858.

The approximate p-value is then

P (N(0, 1) ≥ 2.858) = 0.0021.

• The Two Population C+E Model
We assume that there are n1 measurements from population 1 generated
by the C+E model

Y1,i = µ1 + ε1,i, i = 1, . . . , n1,

and n2 measurements from population 2 generated by the C+E model

Y2,i = µ2 + ε2,i, i = 1, . . . , n2.

We want to compare µ1 and µ2.
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• Hypothesis Test for Paired Comparisons
Sometimes each observation from population 1 is paired with another ob-
servation from population 2. For example, each student may take a pre-
and post-test. In this case n1 = n2 and by looking at the pairwise differ-
ences, Di = Y1,i−Y2,i, we transform the two population problem to a one
population problem for C+E model D = µD + εD, where µD = µ1 − µ2

and εD = ε1 − ε2. Therefore, an hypothesis test for the difference µ1 − µ2

is obtained by performing a one sample hypothesis test for µD based on
the differences Di.

• Example:
The manufacturer of a new warmup bat thinks its product is effective in
raising batting averages. To test if this is true, it selects a random sample
of 12 baseball players from among a larger number who volunteer to try
the bat, and who have never used it before. The players use the warmup
bat for a season, and company researchers obtain as data the batting
averages from this season and the previous (pre-bat) season.

1. The Scientific Hypothesis Batting averages are higher when play-
ers use the bat.

2. The Statistical Model The paired C+E model: If Di is the dif-
ference between this season’s and last season’s batting average for
player i, we assume Di = µD + εi, where the random errors, εi, are
independent and follow a N(0, σ2) distribution model.

3. The Statistical Hypotheses

H0 : µD = 0
Ha : µD > 0

4. The Test Statistic The standardized test statistic is

t =
D

σ̂(D)
,

where
σ̂(D) =

SD√
n

is the estimated standard error of D, and n = 12.
Under H0, t follows a t11 distribution model. The data (found in
SASDATA.BATTING) are:
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PLAYER AVG92 AVG93 D
1 0.254 0.262 0.008
2 0.274 0.290 0.016
3 0.300 0.304 0.004
4 0.246 0.267 0.021
5 0.278 0.291 0.013
6 0.252 0.257 0.005
7 0.235 0.248 0.013
8 0.313 0.324 0.021
9 0.305 0.317 0.012
10 0.255 0.252 −0.003
11 0.244 0.276 0.032
12 0.322 0.332 0.010

An inspection of the differences shows no evidence of nonnormality or
outliers, so we proceed with the test. For these data, d = 0.0127, and
sd = 0.0092. Then σ̂(D) = 0.0092/

√
12 = 0.0027, so the observed

value of the standardized test statistic is

t∗ =
0.0127
0.0027

= 4.70,

5. The P-Value The p-value is

P (t11 ≥ 4.7) = 0.0006.

• Testing Differences in Population Means of
Independent Populations
Let Y 1 and Y 2 denote the sample means from populations 1 and 2, S2

1

and S2
2 the sample variances. The point estimator of µ1− µ2, is Y 1− Y 2.

We will test

H0 : µ1 − µ2 = δ0

Versus one of
Ha− : µ1 − µ2 < δ0,
Ha+ : µ1 − µ2 < δ0,
Ha± : µ1 − µ2 6= δ0,

where δ0 is a specified value.

• Equal Variances
If the population variances are equal (σ2

1 = σ2
2 = σ2), then we estimate σ2

by the pooled variance estimator

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
.
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The estimated standard error of Y 1 − Y 2 is then given by

σ̂p(Y 1 − Y 2) =

√
S2

p

(
1
n1

+
1
n2

)
.

Then, if H0 is true,

t(p) =
Y 1 − Y 2 − δ0

σ̂p(Y 1 − Y 2)

has a tn1+n2−2 distribution.

Suppose t(p)∗ is the observed value of t(p). Then the p-value of the test of
H0 versus Ha− is

p− = P (tn1+n2−2 ≤ t(p)∗),

versus Ha+ is
p+ = P (tn1+n2−2 ≥ t(p)∗),

and versus Ha± is
p± = 2min(p−, p+).

• Unequal Variances
If σ2

1 6= σ2
2 , then the standardized test statistic

t(ap) =
Y 1 − Y 2 − δ0

σ̂(Y 1 − Y 2)
.

approximately follows a tν distribution model, where ν is the largest inte-
ger less than or equal to (

S2
1

n1
+ S2

2
n2

)2

(
S2
1

n1

)2

n1−1 +

(
S2
2

n2

)2

n2−1

,

and

σ̂(Ȳ1 − Ȳ2) =

√
S2

1

n1
+

S2
2

n2
.

If t(ap)∗ denotes the observed value of t(ap), the p-values for H0 versus Ha− ,
Ha+ and Ha±, respectively, are p− = P (tν ≤ t(ap)∗), p+ = P (tν ≥ t(ap)∗)
and p± = 2min(p−, p+).

• Example:
A company buys cutting blades used in its manufacturing process from two
suppliers. In order to decide if there is a difference in blade life, the life-
times of 10 blades from manufacturer 1 and 13 blades from manufacturer 2
used in the same application are compared. A summary of the data shows
the following (units are hours): (The data are in SASDATA.BLADE2)
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Manufacturer n y s
1 10 118.4 26.9
2 13 134.9 18.4

The experimenters generated histograms and normal quantile plots of the
two data sets and found no evidence of nonnormality or outliers. The
estimate of µ1 − µ2 is y1 − y2 = 118.4− 134.9 = −16.5.

1. The Scientific Hypothesis There is a difference in the lifetimes of
blades from the two manufacturers.

2. The Statistical Model The two population C+E model. For illus-
tration, we will consider both the equal-variance and general case.

3. The Statistical Hypotheses

H0 : µ1 − µ2 = 0
Ha : µ1 − µ2 6= 0

To calculate the test statistic and p-value, we will consider separately the
two cases: equal variances and unequal variances.

• Equal Variances

4. The Test Statistic
The pooled variance estimate is

s2
p =

(10− 1)(26.9)2 + (13− 1)(18.4)2

10 + 13− 2
= 503.6,

So the standard error estimate of Y 1 − Y 2 is

σ̂p(Y 1 − Y 2) =

√
503.6

(
1
10

+
1
13

)
= 9.44.

Therefore, t(p)∗ = −16.5/9.44 = −1.75, with 10+13-2=21 degrees of
freedom.

5. The p-value p− = P (t21 ≤ −1.75) = 0.0473, p+ = P (t21 ≥
−1.75) = 0.9527, and the p-value for this problem is 2min(0.0473, 0.9527) =
0.0946.

• Unequal Variances

4. The Test Statistic
The standard error estimate of Y 1 − Y 2 is

σ̂(Y 1 − Y 2) =

√
(26.9)2

10
+

(18.4)2

13
= 9.92.
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The observed value of the standardized test statistic is t(ap)∗ =
−16.5/9.92 = −1.67. The degrees of freedom ν is computed as the
greatest integer less than or equal to(

(26.9)2

10 + (18.4)2

13

)2

(
(26.9)2

10

)2

10−1 +

(
(18.4)2

13

)2

13−1

= 15.17,

so ν = 15.

5. The P-Value
p− = P (t15 ≤ −1.67) = 0.0583, p+ = P (t15 ≥ −1.67) = 0.9417, and
the p-value for this problem is
2 min(0.0583, 0.9417) = 0.1166.

The results for the two t-tests are not much different.

• The Large Sample Case
If n1 and n2 are large (for most cases, 100 will qualify as large), you may
base the test on the statistic used in the unequal variances case:

t(ap) =
Y 1 − Y 2 − δ0

σ̂(Y 1 − Y 2)
.

Under H0, t(ap) ·∼ N(0, 1), so you may use the standard normal distribu-
tion to compute the p-value (which means you don’t have to do that nasty
degrees of freedom calculation.)

• Comparing Two Population Proportions
Y1 ∼ b(n1, p1) and Y2 ∼ b(n2, p2) are observations from two independent
populations. The estimator of p1 − p2 is

p̂1 − p̂2 =
Y1

n1
− Y2

n2
.

We wish to test a null hypothesis that the two population proportions
differ by a known amount δ0,

H0 : p1 − p2 = δ0,

against one of three possible alternative hypotheses:

Ha+ : p1 − p2 > δ0

Ha− : p1 − p2 < δ0

Ha± : p1 − p2 6= δ0
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The tests we will present rely on the normal approximation promised by
the Central Limit Theorem. Therefore, you should always check that the
sample sizes are large enough to justify this approximation. yi ≥ 10 and
ni − yi ≥ 10, i = 1, 2, suffices as a rule of thumb.

• Case 1: δ0 = 0
Suppose H0 is p1 − p2 = 0. Then, let p = p1 = p2 denote the common
value of the two population proportions. If H0 is true, the variance of p̂1

equals p(1 − p)/n1 and that of p̂2 equals p(1 − p)/n2. This implies the
standard error of p̂1 − p̂2 equals√

p(1− p)
n1

+
p(1− p)

n2
.

Since we don’t know p, we estimate it using the data from both popula-
tions:

p̂ =
Y1 + Y2

n1 + n2
.

The estimated standard error of p̂1 − p̂2 is then

σ̂0(p̂1 − p̂2) =

√
p̂(1− p̂)

n1
+

p̂(1− p̂)
n2

=

√
p̂(1− p̂)

(
1
n1

+
1
n2

)
,

and the standardized test statistic is then

Z0 =
p̂1 − p̂2

σ̂0(p̂1 − p̂2)
.

which has approximately a N(0, 1) distribution if H0 is true.

• Case 2: δ0 6= 0
If δ0 6= 0, the (by now) standard reasoning gives the standardized test
statistic

Z =
p̂1 − p̂2 − δ0

σ̂(p̂1 − p̂2)
,

where

σ̂(p̂1 − p̂2) =

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)
n2

is the estimated standard error of p̂1 − p̂2.
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• Example:
In a recent survey on academic dishonesty 24 of the 200 female college stu-
dents surveyed and 26 of the 100 male college students surveyed agreed or
strongly agreed with the statement “Under some circumstances academic
dishonesty is justified.” Suppose pf denotes the proportion of all female
and pm the proportion of all male college students who agree or strongly
agree with this statement.
To illustrate the calculation of the two possible test statistics, we will
consider two different scientific hypotheses:

1. Scientific Hypothesis 1: There is a difference in the population
proportions of male and female students who agree or strongly agree
with the statement.

2. Scientific Hypothesis 2: The population proportion of males who
agree or strongly agree with the statement is at least 0.1 greater than
the population proportion of females who agree or strongly agree with
the statement.

1. Scientific Hypothesis 1 There is a difference in the population
proportions of male and female students who agree or strongly agree
with the statement.

2. The Statistical Model The two-population binomial.
3. The Statistical Hypotheses

H0 : pf − pm = 0
Ha : pf − pm 6= 0

4. The Test Statistic The point estimate of pf − pm is

p̂f − p̂m = 24/200− 26/100 = −0.140,

and the estimate of the common value of pf and pm under H0 is
p̂ = (26 + 24)/(200 + 100) = 0.167.
Thus,

σ̂0(p̂f − p̂m) =√
(0.167)(0.833)

(
1

200
+

1
100

)
=

0.046,

and
z∗ =

−0.140
0.046

= −3.04.

5. The P-Value Since Yf = 24, 200 − Yf = 176, Ym = 26, and 100 −
Ym = 74 all exceed 10, we may use the normal approximation: p+ =
P (N(0, 1) ≥ −3.04) = 0.0012, p− = P (N(0, 1) ≤ −3.04) = 0.9988,
and p± = 2 min(0.9988, 0.0012) = 0.0024, this last being the p-value
we want.
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1. Scientific Hypothesis 2 The population proportion of males who
agree or strongly agree with the statement is at least 0.1 greater than
the population proportion of females who agree or strongly agree with
the statement.

2. The Statistical Model The two-population binomial.

3. The Statistical Hypotheses

H0 : pf − pm = −0.10
Ha : pf − pm < −0.10

4. The Test Statistic The estimated standard error of pf − pm is

σ̂(p̂1 − p̂2) =√
0.12(1− 0.12)

200
+

0.26(1− 0.26)
100

=

0.05,

which gives

z∗ =
24/200− 26/100− (−0.10)

0.05
= −0.80,

5. The P-Value P (N(0, 1) ≤ −0.80) = 0.2119.

• Fixed Significance Level Tests
Steps, illustrated using grinding example:

1. Specify hypotheses to be tested.

H0 : µ = 0.75
Ha : µ > 0.75

(i.e. µ0 = 0.75)

2. Set the significance level α. Usual choices are 0.01 or 0.05. We’ll
choose the latter.

3. Specify the (standardized) test statistic and it’s distribution
under H0. For simplicity, assume we know σ = 0.0048. Then the
standardized test statistic is

Z =
Y − µ0

σ/
√

n
=

Y − 0.75
0.0048/

√
150

,

and under H0 it has a N(0, 1) distribution.
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4. Find the critical region of the test. The critical region of the
test is the set of values of the (standardized) test statistic for which
H0 will be rejected in favor of Ha. Here, Ha tells us that the critical
region has the form

[zα,∞) = [z0.05,∞) = [1.645,∞),

meaning H0 will be rejected if and only if the observed value of Z is
greater than or equal to 1.645.

5. Perform the test. The observed value of Z is

z∗ =
0.7518− 0.75
0.0048/

√
150

= 4.5,

which falls in the critical region, so H0 is rejected in favor of Ha.

• Power In a fixed significance level test, power is the probability of
rejecting H0 in favor of Ha. Power will vary for different values of the
parameter being tested, so it is written as a function of that parameter.

In the grinding example, the power is

Π(µ) = P (Z ≥ 1.645|µ)

= P

(
Y − 0.75

0.0048/
√

150
≥ 1.645|µ

)
= P (Y ≥ 0.75 + (1.645)

0.0048√
150

|µ)

= P (Z ′ ≥ 1.645 +
0.75− µ

0.0048/
√

150
),

where Z ′ = Z−µ
σ/
√

n
∼ N(0, 1).

• The relation between hypothesis tests and con-
fidence intervals
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