
Bivariate Data: Graphical Display
The scatterplot is the basic tool for graphically displaying bivariate
quantitative data.



Example:
Some investors think that the performance of the stock market in
January is a good predictor of its performance for the entire year.
To see if this is true, consider the following data on Standard &
Poor’s 500 stock index (found in SASDATA.SANDP).



Percent Percent
January 12 Month

Year Gain Gain

1985 7.4 26.3
1986 0.2 14.6
1987 13.2 2.0
1988 4.0 12.4
1989 7.1 27.3
1990 -6.9 -6.6
1991 4.2 26.3
1992 -2.0 4.5
1993 0.7 7.1
1994 3.3 -1.5



The plot your instructor is about to show you is a scatterplot of
the percent gain in the S&P index over the year (vertical axis)
versus the percent gain in January (horizontal axis).



How to analyze a scatterplot
The scatterplot of the S&P data can illustrate the general analysis
of scatterplots. You should look for:

I Association. This is a pattern in the scatterplot.
I Type of Association. If there is association, is it:

o Linear.
o Nonlinear.

I Direction of Association.



For the S&P data, there is association. This shows up as a general
positive relation (Larger % gain in January is generally associated
with larger % yearly gain.) It is hard to tell if the association is
linear, since the spread of the data is increasing with larger January
% gain. This is due primarily to the 1987 datum in the lower right
corner of plot, and to some extent the 1994 datum. Eliminate
those two points, and the association is strong linear and positive,
as the second plot shows.
There is some justification for considering the 1987 datum
atypical. That was the year of the October stock market crash.
The 1994 datum is a mystery to me.
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Correlation
Pearson Correlation
Suppose n measurements, (Xi , Yi ), i = 1, . . . , n are taken on the
variables X and Y . Then the Pearson correlation between X and
Y computed from these data is

r =
1

n − 1

n∑
i=1

X ′
i Y

′
i ,

where

X ′
i =

Xi − X

SX
and Y ′

i =
Yi − Y

SY

are the standardized data.
The following illustrate what Pearson correlation measures.



Good Things to Know About Pearson Correlation
I Pearson correlation is always between -1 and 1. Values near 1

signify strong positive linear association. Values near -1 signify
strong negative linear association. Values near 0 signify weak
linear association.

I Correlation between X and Y is the same as the correlation
between Y and X .



I Correlation can never by itself adequately summarize a set of
bivariate data. Only when used in conjunction with
appropriate summary measures for X and Y (such as X , Y ,
SX , and SY if X and Y are normally distributed) and a
scatterplot can an adequate summary be obtained.

I The meaningfulness of a correlation can only be judged with
respect to the sample size.



A Confidence Interval for the Population
Correlation, ρ
If n is the sample size,

t = (r − ρ)

√
n − 2

(1− r2)(1− ρ2)

has approximately a tn−2 distribution. We can use this fact to
obtain a confidence interval for ρ.



Example:
Back to the S&P data, the SAS macro CORR gives a 95%
confidence interval for ρ as
(−0.2775, 0.8345). As this interval contains 0, it indicates no
significant linear association between JANGAIN and YEARGAIN.
If we remove the 1987 and 1994 data, a different story emerges.
Then the Pearson correlation is r = 0.9360, and a 95% confidence
interval for ρ is (0.6780, 0.9880). Since this interval consists
entirely of positive numbers, we conclude that ρ is positive and we
estimate its value to be between 0.6780 and 0.9880.



Under H0 : ρ = ρ0, the test statistic

t = (r − ρ0)

√
n − 2

(1− r2)(1− ρ2
0)

has a tn−2 distribution. We can use this to conduct hypothesis
tests. If t∗ is the observed value of t,
For Ha+ : ρ > ρ0, the p-value is p+ = P(t ≥ t∗); For Ha− : ρ < ρ0,
the p-value is p+ = P(t ≤ t∗); For Ha± : ρ 6= ρ0, the p-value is
p± = 2min(p−, p+).



As an example, for the S&P data we test

H0 : ρ = 0
Ha± : ρ 6= 0

by computing

t∗ = 0.4295

√
8

(1− 0.42952)
= 1.3452,

and comparing this with a t8 distribution. The resulting values are

p+ = P(t8 > 1.3452) = 0.1077,

and
p− = P(t8 < 1.3452) = 0.8923,

so that
p = 2min(0.1077, 0.8923) = 0.2154.
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Simple Linear Regression
The SLR model attempts to quantify the relationship between a
single predictor variable Z and a response variable Y . This
reasonably flexible yet simple model has the form

Y = β0 + β1X (Z ) + ε,

where ε is a random error term, and X (Z ) is a function of Z , such
as Z , Z 2, or ln(Z ).



By looking at different functions X , we are not confined to linear
relationships, but can also model nonlinear ones. The function X is
called the regressor. Often, we omit specifying the dependence of
the regressor X on the predictor Z , and just write the model as

Y = β0 + β1X + ε.



Example: An experiment was conducted on the effect of
number of days of training received (Z ) on performance (Y ) in a
battery of simulated sales presentations. The data are found in
sasdata.knn ex.



Model Fitting
The term “model fitting” refers to using data to estimate model
parameters. We will fit the simple linear regression model to a set
of data (Xi ,Yi ), i = 1, . . . , n. As with the C+E model, two
options (there are others as well) are least absolute errors, which
finds values b0 and b1 to minimize

SAE(b0, b1) =
n∑

i=1

| Yi − (b0 + b1Xi ) |,

or least squares, which finds values b0 and b1 to minimize

SSE(b0, b1) =
n∑

i=1

(Yi − (b0 + b1Xi ))
2.



We’ll concentrate on least squares. Using calculus, we find the
least squares estimators of β0 and β1 to be

β̂1 =

∑n
i=1(Xi − X )(Yi − Y )∑n

i=1(Xi − X )2
.

and
β̂0 = Y − β̂1X .



Example: For the S&P data, we would like to fit a model that
can predict YEARGAIN (the response) as a function of JANGAIN
(the predictor). Since a scatterplot reveals no obvious nonlinearity,
we will take the regressor to equal the predictor: that is,

YEARGAIN = β0 + β1JANGAIN + ε.

The relevant SAS/INSIGHT output for the regression of
YEARGAIN on JANGAIN looks like this:



And the relevant SAS/INSIGHT output for the regression of
YEARGAIN on JANGAIN, with the years 1987 and 1994 removed,
looks like this:
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Residuals, Predicted and Fitted Values
I The predicted value of Y at X is

Ŷ = β̂0 + β̂1X .

I For X = Xi , one of the values in the data set, the predicted
value is called a fitted value and is written

Ŷi = β̂0 + β̂1Xi .

I The residuals, ei , i = 1, . . . , n are the differences between
the observed and fitted values for each data value:

ei = Yi − Ŷi = Yi − (β̂0 + β̂1Xi ).



Tools to Assess the Quality of the Fit
I Residuals. Residuals should exhibit no patterns when plotted

versus the Xi , Ŷi or other variables, such as time order.
Studentized residuals should be plotted on a normal quantile
plot.



I Coefficient of Determination. The coefficient of
determination, r2, is a measure of (take your pick):

o The proportion of the variation in the response “explained” by
the predictor.

o The proportion the variation in the response is reduced by
knowing the predictor.

The notation r2 comes from the fact that the coefficient of
determination is the square of the Pearson correlation. Check out
the quality of the two fits for the S&P data:
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Model Interpretation
I The Fitted Slope. The fitted slope may be interpreted in a

couple of ways:

o As the estimated change in the mean response per unit
increase in the regressor. This is another way of saying it is
the derivative of the fitted response with respect to the
regressor:

dŶ

dx
=

d

dx
(β̂0 + β̂1x) = β̂1.



o In terms of the estimated change in the mean response
per unit increase in the predictor. In this formulation, if
the regressor X , is a differentiable function of the predictor, Z ,

dŶ

dz
=

d

dz
(β̂0 + β̂1X ) = β̂1

dX

dz
,

so

β̂1 =
dŶ

dz

/
dX

dz



o In terms of the estimated change in the mean response
per unit increase in the predictor. In this formulation, if
the regressor X , is a differentiable function of the predictor, Z ,

dŶ

dz
=

d

dz
(β̂0 + β̂1X ) = β̂1

dX

dz
,

so

β̂1 =
dŶ

dz

/
dX

dz



I The Fitted Intercept. The fitted intercept is the estimate of
the response when the regressor equals 0, provided this makes
sense.

I The Mean Square Error. The mean square error or MSE, is an
estimator of the variance of the error terms ε, in the simple
linear regression model. Its formula is

MSE =
1

n − 2

n∑
i=1

e2
i .

It measures the “average squared prediction error” when using
the regression.



Example: Consider the S&P data with the 1987 and 1994
observations omitted. The fitted model is

̂YEARGAIN = 9.6462 + 2.3626JANGAIN.

I The Fitted Slope. The fitted slope, 2.3626 is interpreted as
the estimated change in YEARGAIN per unit increase in
JANGAIN.

I The Fitted Intercept. The fitted intercept, 9.6462, is the
estimated YEARGAIN if JANGAIN equals 0.

I The Mean Square Error. The MSE, 21.59, estimates the
variance of the random errors.
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Classical Inference for the SLR Model
Estimation of Slope and Intercept
Level L confidence intervals for β0 and β1 are

(β̂0 − σ̂(β̂0)tn−2, 1+L
2

, β̂0 + σ̂(β̂0)tn−2, 1+L
2

),

and
(β̂1 − σ̂(β̂1)tn−2, 1+L

2
, β̂1 + σ̂(β̂1)tn−2, 1+L

2
),

respectively, where

σ̂(β̂0) =

√√√√MSE

[
1

n
+

X
2∑n

i=1(Xi − X )2

]
,

and

σ̂(β̂1) =

√√√√MSE

/
n∑

i=1

(Xi − X )2



Example: For the reduced S&P data (i.e. with 1987 and 1994
removed) the SAS/INSIGHT output shows the estimated intercept
is β̂0 = 9.65 with σ̂(β̂0) = 1.77. Since t6,0.975 = 2.45, a 95%
confidence interval for β0 is

9.65± (1.77)(2.45) = (5.31, 13.98).

A similar computation with β̂1 = 2.36 and σ̂(β̂1) = 0.36, gives a
95% confidence interval for β1 as

2.36± (0.36)(2.45) = (1.47, 3.25).



NOTE: Whether the interval for β1 contains 0 is of particular
interest. If it does, it means that we cannot statistically distinguish
β1 from 0. This means we have to consider plausible the model for
which β1 = 0:

Y = β0 + ε

This model, which is just the C+E model, implies that there is no
association between Y and X .
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To test the hypothesis

H0 : β0 = β00

versus one of the alternative hypotheses

Ha− : β0 < β00

Ha+ : β0 > β00

Ha± : β0 6= β00,

where β00 is a known constant, we make use of the fact that under
the distribution theory developed above, if H0 is true,

t =
β̂0 − β00

σ̂(β̂0)
∼ tn−2.

If t∗ denotes the observed value of t, the p-value of the tests of H0

versus Ha− , Ha+ and Ha± are p− = P(T ≤ t∗), p+ = P(T ≥ t∗)
and p± = P(|T | ≥ |t∗|) = 2 min(p−, p+), respectively, where
T ∼ tn−2.



Similarly, to test the hypothesis

H0 : β1 = β10

versus one of the alternative hypotheses

Ha− : β1 < β10

Ha+ : β1 > β10

Ha± : β1 6= β10,

we make use of the fact that under the distribution theory
developed above, if H0 is true,

t =
β̂1 − β10

σ̂(β̂1)
∼ tn−2.

If t∗ denotes the observed value of t, the p-value of the tests of H0

versus Ha− , Ha+ and Ha± are p− = P(T ≤ t∗), p+ = P(T ≥ t∗)
and p± = P(|T | ≥ |t∗|) = 2 min(p−, p+), respectively, where
T ∼ tn−2.



Most often, but not always, the test of greatest interest is whether,
given the SLR model, the response depends on the regressor as
specified by the model or not. The appropriate hypothesis test for
this purpose is

H0 : β1 = 0

versus

Ha± : β1 6= 0.

The p-value for this test is automatically output on SAS regression
output (and that of most other statistics packages).



Estimation of The Mean Response
The mean response at X = x0 is

µ0 = β0 + β1x0.

The point estimator of µ0 is

Ŷ0 = β̂0 + β̂1x0.

A level L confidence interval for µ0 is

(Ŷ0 − σ̂(Ŷ0)tn−2, 1+L
2

, Ŷ0 + σ̂(Ŷ0)tn−2, 1+L
2

),

where

σ̂(Ŷ0) =

√
MSE

[
1

n
+

(x0 − X )2∑
(Xi − X )2

]
.



Prediction of a Future Observation
A level L prediction interval for a future observation at X = x0 is

(Ŷnew − σ̂(Ynew − Ŷnew )tn−2, 1+L
2

,

Ŷnew + σ̂(Ynew − Ŷnew )tn−2, 1+L
2

)),

where
Ŷnew = β̂0 + β̂1x0,

and

σ̂(Ynew − Ŷnew ) =

√
MSE

[
1 +

1

n
+

(x0 − X )2∑
(Xi − X )2

]
.

The macro REGPRED will compute confidence intervals for a
mean response and prediction intervals for future observations for
each data value and for other user-chosen X values.



Example:
The SAS macro REGPRED was run on the reduced S&P data, and
estimation of the mean response and prediction of a new
observation at the values JANGAIN= 3.3 and 13.2 were requested
(These are the values for the two omitted cases). Here are the
results



Level 0.95
JANGAIN YEARGAIN Prediction Interval

3.3 -1.5 5.32 29.57
13.2 2.0 25.11 56.55



The Relation Between Correlation and Regression
If the standardized responses and regressors are

Y ′
i =

Yi − Y

SY
,

and

X ′
i =

Xi − X

SX
,

Then the regression equation fitted by least squares can be written
as

Ŷ ′ = r · X ′,

Where X ′ is any value of a regressor variable standardized as
described above, and r is the Pearson correlation between X and
Y .



The Regression Effect refers to the phenomenon of the
standardized predicted value being closer to 0 than the
standardized regressor. Equivalently, the unstandardized predicted
value is fewer Y standard deviations from the response mean than
the regressor value is in X standard deviations from the regressor
mean.



For the S&P data r = 0.4295, so for a January gain X ′ standard
deviations (SX ) from X , the regression equation estimates a gain
for the year of

Ŷ ′ = 0.4295 · X ′

standard deviations (SY ) from Y .
With 1987 and 1994 removed, the estimate is

Ŷ ′ = 0.9360 · X ′,

which reflects the stronger relation.



The Relationship Between Two Categorical
Variables
Analysis of categorical data is based on counts, proportions or
percentages of data that fall into the various categories defined by
the variables.
Some tools used to analyze bivariate categorical data are:

I Mosaic Plots.

I Two-Way Tables.



Example:
A survey on academic dishonesty was conducted among WPI
students in 1993 and again in 1996. One question asked students
to respond to the statement “Under some circumstances academic
dishonesty is justified.” Possible responses were “Strongly agree”,
“Agree”, “Disagree” and “Strongly disagree”. Here are the 1993
results:
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Inference for Categorical Data with Two
Categories Methods for comparing two proportions can be
used (estimation from chapter 5 and hypothesis tests from chapter
6. See homework problem 6.24.).



Inference for Categorical Data with More
Than Two Categories: One-Way Tables
Suppose the categorical variable has c categories, and that the
population proportion in category i is pi . To test

H0 : pi = p
(0)
i , i = 1, 2, . . . , c

Ha : pi 6= p
(0)
i for at least one i

for pre-specified values p
(0)
i , i = 1, 2, . . . , c , use the Pearson χ2

statistic

X 2 =
c∑

i=1

(Yi − np
(0)
i )2

np
(0)
i

,

where Yi is the observed frequency in category i , and n is the total
number of observations.



Note that for each category the Pearson statistic computes
(observed-expected)2/expected and sums over all categories.
Under H0, X 2 ∼ χ2

c−1. Therefore, if x2∗ is the observed value of
X 2, the p-value of the test is P(χ2

c−1 ≥ x2∗).



Example:
Historically, the distribution of weights of “5 pound” dumbbells
produced by one manufacturer have been normal with mean 5.01
and standard deviation 0.15 pound. It can be easily shown that
20% of the area under a normal curve lies within ±0.25 standard
deviations of the mean, 20% lies between 0.25 and 0.84 standard
deviations of the mean, 20% lies between -0.84 and -0.25 standard
deviations of the mean, 20% lies beyond 0.84 standard deviations
above the mean, and another 20% lies beyond 0.84 standard
deviations below the mean.



This means that the boundaries that break the N(5.01, 0.152)
density into five subregions, each with area 0.2, are 4.884, 4.9725,
5.0475 and 5.136.
A sample of 100 dumbbells from a new production lot shows that
25 lie below 4.884, 23 between 4.884 and 4.9725, 21 between
4.9725 and 5.0475, 18 between 5.0475 and 13 above 5.136. Is this
good evidence that the new production lot does not follow the
historical weight distribution?



Solution:
We will perform a χ2 test. Let pi be the proportion of dumbbells
in the production lot with weights in subinterval i , where
subinterval 1 is (−∞, 4.884], subinterval 2 is (4.884, 4.9725], and
so on. If the production lot follows the historical weight
distribution, all pi equal 0.2. This gives our hypotheses:

H0 : pi = 0.2, i = 1, 2, . . . , 5,
Ha : pi 6= 0.2,

for at least one i , i = 1, 2, . . . , 5.



Since np
(0)
i = 20 for each i , the test statistic is

x2∗ =
(25− 20)2

20
+ . . . +

(13− 20)2

20
= 4.4

The p-value is P(χ2
4 ≥ 4.4) = 0.3546, so we cannot reject H0.



Inference for Categorical Data with More
Than Two Categories: Two-Way Tables
Suppose a population is partitioned into rc categories, determined
by r levels of variable 1 and c levels of variable 2. The population
proportion for level i of variable 1 and level j of variable 2 is pij .
These can be displayed in the following r × c table:



Column Marginals
row 1 2 ... c

1 p11 p12 ... p1c p1·
2 p21 p22 ... p2c p2·
. . . . .
. . . . .
. . . . .
r pr1 pr2 ... prc pr ·

Marginals p·1 p·2 ... p·c 1



We want to test

H0 : row and column variables
are independent

Ha : row and column variables
are not independent.

To do so, we select a random sample of size n from the
population. Suppose the table of observed frequencies is

Column Totals
row 1 2 ... c

1 Y11 Y12 ... Y1c Y1·
2 Y21 Y22 ... Y2c Y2·
. . . . .
. . . . .
. . . . .
r Yr1 Yr2 ... Yrc Yr ·

Totals Y·1 Y·2 ... Y·c n



Under H0 the expected cell frequency for the ij cell is given by

Eij =
row i total× column j total

sample size

=
Yi ·Y·j

n
= np̂i ·p̂·j ,

where p̂i · = Yi ·/n and p̂·j = Y·j/n.
To measure the deviations of the observed frequencies from the
expected frequencies under the assumption of independence, we
construct the Pearson χ2 statistic

X 2 =
r∑

i=1

c∑
j=1

(Yij − Eij)
2

Eij
.

Note that for the test to be valid, we require that Eij ≥ 5.



Example: A polling firm surveyed 269 American adults
concerning how leisure time is spent in the home. One question
asked them to select which of five leisure activities they were most
likely to partake in on a weeknight. The results are broken down by
age group in the following table:



As an example of the computation of table entries, consider the
entries in the (1,2) cell (age: 18-25, activity: Read), in which the
observed frequency is 3. The marginal number in the 18-25
bracket is 62, while the marginal number in the Read bracket is 40,
so p̂1· = 62/269, while p̂·2 = 40/269, so the expected number in
the (1,2) cell is 269(62/269)(40/269) = 9.22. The Pearson
residual is (3− 9.22)/

√
(9.22) = −2.05.

The value of the χ2 statistic is 38.91, which is computed as the
sum of the squares of the Pearson residuals. Comparing this with
the χ2

16 distribution, we get a p-value of 0.0011.



Synopsis:
For data in a two-way table with r rows and c columns, we want
to test

H0 : row and column variables
are independent

Ha : row and column variables
are not independent.



Test statistic:

X 2 =
r∑

i=1

c∑
j=1

(Yij − Eij)
2

Eij
,

where Yij is the observed count in cell ij and
Eij = np̂i ·p̂·j = Yi ·Y·j/n is the expected count in cell ij if H0 is true.

p-value: P(χ2
(r−1)(c−1) ≥ x∗2), where x∗2 is the observed value of

the test statistic.



TYU 13



Association is NOT Cause and Effect
Two variables may be associated due to a number of reasons, such
as:

1. X could cause Y .

2. Y could cause X .

3. X and Y could cause each other.

4. X and Y could be caused by a third (lurking) variable Z.

5. X and Y could be related by chance.

6. Bad (or good) luck.



The Issue of Stationarity
I When assessing the stationarity of a process in terms of

bivariate measurements X and Y , always consider the
evolution of the relationship between X and Y , as well as the
individual distribution of the X and Y values, over time or
order.

I Suppose we have a model relating a measurement from a
process to time or order. If, as more data are taken the pattern
relating the measurement to time or order remains the same,
we say that the process is stationary relative to the model.


