
• The MLR Model

Y = β0 + β1X1(Z1, Z2, . . . , Zp) + β2X2(Z1, Z2, . . . , Zp) + . . . + βqXq(Z1, Z2, . . . , Zp) + ε,

where the Zs are the predictor variables and ε is a random error. Examples are

Y = β0 + β1Z1 + β2Z
2
1 + ε,

Y = β0 + β1Z1 + β2Z2 + β3Z
2
1 + β4Z1Z2 + β5Z

2
2 + ε,

Y = β0 + β1 log(Z2) + β3

√
Z1Z2 + ε

We will write these models generically as

Y = β0 + β1X1 + β2X2 + . . . + βqXq + ε.

• Interpreting the Response Surface
The surface defined by the deterministic part of the multiple linear regression model,

β0 + β1X1(Z1, Z2, . . . , Zp)

+β2X2(Z1, Z2, . . . , Zp)+

. . . + βqXq(Z1, Z2, . . . , Zp),

is called the response surface of the model.

• Interpreting the Response Surface as a Function of the Re-
gressors
When considered a function of the regressors, the response surface is defined by the functional
relationship

E(Y | X1 = x1, X2 = x2, . . . , Xq = xq) =

β0 + β1x1 + β2x2 + . . . + βqxq.

If it is possible for the Xi to simultaneously take the value 0, then β0 is the value of the response
surface when all Xi equal 0. Otherwise, β0 has no separate interpretation of its own.

• For i = 1, . . . , q, βi is interpreted as the change in the expected response per unit change in the
regressor Xi, when all other regressors are held constant (If this makes sense, as it will not, e.g.,
if X1 = Z1 and X2 = Z3

1 ).

• Interpreting the Response Surface as a Function of the Pre-
dictors
As a function of the predictors, the response surface is defined by the functional relationship

E(Y | Z1 = z1, Z2 = z2, . . . , Zp = zp) =

β0 + β1X1(z1, z2, . . . , zp)+

β2X2(z1, z2, . . . , zp)+

. . . + βqXq(z1, z2, . . . , zp).

• If the regressors are differentiable functions of the predictors, the instantaneous rate of change of
the surface in the direction of predictor Zi, at the point z1, z2, . . . , zp is

∂

∂zi
E(Y | Z1 = z1, Z2 = z2, . . . , Zp = zp).
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• Example:

o Additive Model: For the model

E(Y | Z1 = z1, Z2 = z2) =

β0 + β1z1 + β2z2,

the change in expected response per unit change in zi is

∂

∂zi
E(Y | Z1 = z1, Z2 = z2) =

∂

∂zi
(β0 + β1z1 + β2z2) = βi, i = 1, 2.

–

o Full Quadratic Model: For the full quadratic model

E(Y | Z1 = z1, Z2 = z2) =

β0 + β1z1 + β2z2 + β3z
2
1 + β4z

2
2 + β5z1z2,

the change in expected response per unit change in z1 is

∂

∂z1
E(Y | Z1 = z1, Z2 = z2) =

β1 + 2β3z1 + β5z2,

and the change in expected response per unit change in z2 is

∂

∂z2
E(Y | Z1 = z1, Z2 = z2) =

β2 + 2β4z2 + β5z1.

• The Modeling Process
The modeling process involves the following steps:

1. Model Specification

2. Model Fitting

3. Model Assessment

4. Model Validation

• Multivariable Visualization
Multivariable visualization begins with a number of standard statistical tools, such as histograms,
to look at each variable individually, or scatterplots, to look at pairs of variables. But the true
power of multivariable visualization can be found only in a set of sophisticated statistical tools
which make use of multiple dynamically-linked displays (You won’t find these in Microsoft Excel!)
Two such tools are

– Scatterplot Arrays

– Rotating 3-D Plots

Here’s a demo:
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• Now it’s your turn to try these out. Each of the data sets sasdata.eg8 2a, sasdata.eg8 2b, sas-
data.eg8 2c and sasdata.eg8 2d contains data generated by one of four multiple regression models
shown on the next page. Using only the scatterplot array, you are to tell which data set was
generated by which model.

• The models are:

1.
Y = −1 + 7x1 + 6x2 − 3x2

1 + 2x2
2 + 7x1x2 + ε,

2.
Y = 5 + 7x1 + 6x2 − 3x2

1 + 2x2
2 + ε,

3.
Y = 5 + 7x1 + 6x2 − 3x2

1 + 2x2
2 + 7x1x2 + ε,

4.
Y = −1 + 7x1 + 6x2 − 3x2

1 + 2x2
2 + ε,

where ε ∼ N(0, 1). Be sure to write down your answers.

Now use the rotating 3-D plot to view the data. Does this change your guesses?

• Fitting the MLR Model
As we did for SLR model, we use least squares to fit the MLR model. This means finding estmators
of the model parameters β0, β1, . . . , βq and σ2. The LSEs of the βs are those values, of b0, b1, . . . , bq,
denoted β̂0, β̂1, . . . , β̂q, which minimize

SSE(b0, b1, . . . , bq) =
n∑

i=1

[Yi − (b0 + b1Xi1 + b2Xi2 + · · ·+ bqXiq)]2.

The fitted values are
Ŷi = β̂0 + β̂1Xi1 + β̂2Xi2 + · · ·+ β̂qXiq,

and the residuals are
ei = Yi − Ŷi.

Example:
Click here to see what happens when we identify and fit a model to data in sasdata.cars93a.

• Assessing Model Fit
Residuals and studentized residuals are the primary tools to analyze model fit. We look for outliers
and other deviations from model assumptions.

Example:
Click here and here to look at the residuals from the fit to the data in sasdata.cars93a.

• Interpretation of the Fitted Model
The fitted model is

Ŷ = β̂0 + β̂1X1(Z1, Z2, . . . , Zp)+

β̂2X2(Z1, Z2, . . . , Zp)+

. . . + β̂qXq(Z1, Z2, . . . , Zp).

If we feel that this model fits the data well, then for purposes of interpretation, we regard the
fitted model as the actual response surface, and we interpret it exactly as we would interpret the
response surface.

Example:
Let’s interpret the fitted model for the fit to the data in sasdata.cars93a.
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• Theory-Based Modeling
Two ways of building models:

– Empirical modeling

– Theoretical modeling

• Comparison of Fitted Models

– Residual analysis

– Principle of parsimony (simplicity of description)

– Coefficient of multiple determination, and its adjusted cousin.

Example:
Let’s fit a second model to the data in sasdata.cars93a, and compare its fit to the first model we
considered. The relevant outputs are found here, here, and here.

• ANOVA
Idea:

– Total variation in the response (about its mean) is measured by

SSTO =
n∑

i=1

(Yi − Y )2.

This is the variation or uncertainty of prediciton if no predictor variables are used.

– SSTO can be broken down into two pieces: SSR, the regression sum of squares, and SSE, the
error sum of squares, so that SSTO=SSR+SSE.

–

– SSE =
∑n

i e2
i is the total sum of the squared residuals. It measures the variation of the

response unaccounted for by the fitted model or, equivalently, the uncertainty of predicting
the response using the fitted model.

– SSR = SSTO − SSR is the variability explained by the fitted model or, equivalently, the
reduction in uncertainty of prediction due to using the fitted model.

• Degrees of Freedom
The degrees of freedom for a SS is the number of independent pieces of data making up the SS.
For SSTO, SSE and SSR the degrees of freedom are n− 1, n− q − 1 and q. These add just as the
SSs do. A SS divided by its degrees of freedom is called a Mean Square.

• The ANOVA Table
This is a table which summarizes the SSs, degrees of freedom and mean squares.

Example:
Here’s the ANOVA table for the original fit to the sasdata.cars93a data.

• Inference for the MLR Model: The F Test

– The Hypotheses:

H0 : β1 = β2 = · · · = βq = 0
Ha : Not H0

– The Test Statistic: F=MSR/MSE

– The P-Value: P (Fq,n−q−1 > F ∗), where Fq,n−q−1 is a random variable from an Fq,n−q−1

distribution and F ∗ is the observed value of the test statistic.
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• T Tests for Individual Predictors

– The Hypotheses:

H0 : βi = 0
Ha : βi 6= 0

– The Test Statistic: t = β̂i

σ̂(β̂i)

– The P-Value: P (|tn−q−1| > |t∗|), where tn−q−1 is a random variable from a tn−q−1

distribution and t∗ is the observed value of the test statistic.

Example:
Here are the tests for the original fit to the sasdata.cars93a data.

• Summary of Intervals for MLR Model

– Confidence Interval for Model Coefficients: A level L confidence interval for βi has
endpoints

β̂i ± σ̂(β̂i)tn−q−1,(1+L)/2

–

– Confidence Interval for Mean Response: A level L confidence interval for the mean
response at predictor values X10, X20, . . . , Xq0 has endpoints

Ŷ0 ± σ̂(Ŷ0)tn−q−1,(1+L)/2

where
Ŷ0 = β̂0 + β̂1X10 + · · ·+ β̂qXq0,

and σ̂(Ŷ0) is the estimated standard error of the response.

–

– Prediction Interval for a Future Observation:
A level L prediction interval for a new response at predictor values X10, X20, . . . , Xq0 has
endpoints

Ŷnew ± σ̂(Ynew − Ŷnew)tn−q−1,(1+L)/2,

where
Ŷnew = β̂0 + β̂1X10 + · · ·+ β̂qXq0,

and
σ̂(Ynew − Ŷnew) =

√
MSE + σ̂2(Ŷ0).

Example:
Here are some intervals for the original fit to the sasdata.cars93a data.

• Multicollinearity
Multicollinearity is correlation among the predictors.

– Consequences

o Large sampling variability for β̂i

o Questionable interpretation of β̂i as change in expected response per unit change in Xi.

–

– Detection
R2

i , the coefficient of multiple determination obtained from regressing Xi on the other Xs,
is a measure of how highly correlated Xi is with the other Xs. This leads to two related
measures of multicollinearity.
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∗
o Tolerance TOLi = 1 −R2

i Small
TOLi indicates Xi is highly correlated with other Xs. We should begin getting concerned
if TOLi < 0.1.

o VIF VIF stands for variance inflation factor. VIFi = 1/TOLi. Large VIFi indicates Xi

is highly correlated with other Xs. We should begin getting concerned if VIFi > 10.

– Remedial Measures

o Center the Xi (or sometimes the Zi)
o Drop offending Xi

Example:
Here’s an example of a model for the sasdata.cars93a data which has lots of multicollinearity:

• Empirical Model Building
Selection of variables in empirical model building is an important task. We consider only one of
many possible methods: backward elimination, which consists of starting with all possible Xi

in the model and eliminating the non-significant ones one at at time, until we are satisfied with
the remaining model.

Example:
Here’s an example of empirical model building for the sasdata.cars93a data.
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