
Chapter 9: The One-Way Model



The One-Way Means Model

Example
A study was conducted to assess the effects of feedback in a
repetitive industrial task. The task was to grind a metal piece to a
specified size and shape. Eighteen male workers were divided
randomly into three groups. All subjects were given the same
introduction to the task.



After beginning the experimental period, the subjects in one group
received no feedback about the task, those in the second group
were given vague and intermittent feedback, and subjects in the
third group were given accurate and continuous feedback.



The response consisted of a measure of the value, in dollars, added
to production by each subject during the experimental period. This
measure was a function of the number of pieces produced, the
accuracy of the grinding operation and the amount of reworking
necessary in the remaining stages of production. One worker
became ill during the study, and his data were dropped. The data,
found in SASDATA.FEEDBACK, are:

Type of Feedback
None Vague Accurate

40.85 38.32 48.59
35.21 40.26 40.71
38.17 47.47 45.33
43.96 44.10 43.76
34.88 40.09 46.41

42.67 44.19

Let’s explore the data visually:



A model appropriate for data of this type is the one-way means
model:

Yij = µi + εij , j = 1, . . . , ni , i = 1, . . . , k,

where the random errors εij are assumed to be independent
random variables from the same zero-mean distribution having
variance σ2. Usually, it is assumed εij ∼ N(0, σ2).
For the present data, i = 3, n1 = 5, and n2 = n3 = 6; µ1 is the
population mean for the no feedback group, and µ2 and µ3 are the
population means for the vague and accurate feedback groups,
respectively.



The one-way means model should look familiar. If k = 2 (i.e.,
there are two populations), it is just the two population C+E
model introduced in chapters 5 and 6, with the assumption that
both population variances are the same value: σ2.



Fitting the Model
The least squares estimator of µi is just the mean of the
observations from population i :

µ̂i = Y i · =
1

ni

ni∑
j=1

Yij

The corresponding estimator of σ2 is the pooled variance estimator

S2
p =

1

n − k

k∑
i=1

(ni − 1)S2
i ,

where S2
i is the sample variance of the observations from

population i .
Let’s check out the fit of the model to the feedback data.



Checking the Fit
The residuals

ei = Yij − µ̂i = Yij − Y i ·

are used to check the fit.
Here’s how to check the fit of the model to the feedback data.



Testing the Equality of Means
The question researchers most often ask concerning the means
model is ”Are the population means all equal?”
Formally, the hypotheses are

H0 : µ1 = µ2 = . . . = µk

Ha : Not all the population means µi

are equal.



These hypotheses are tested using the F statistic. To see what the
F statistic is all about, we first need to learn about partitioning the
variation in the response into different components, in what is
known as the Analysis of Variance (aka ANOVA).



The Analysis of Variance
The total variation in the responses is measured by the total sum
of squares, SSTO:

SSTO =
k∑

i=1

ni∑
j=1

(Yij − Y ··)
2,

where

Y ·· =
1

n

k∑
i=1

ni∑
j=1

Yij ,

is the mean of all the observations (called the grand mean). Here,
n =

∑k
i=1 ni is the total number of observations.



SSTO can be broken into two components: the variation explained
by the model, the model sum of squares

SSM =
k∑

i=1

ni (Y i · − Y ··)
2,

and the variation left unexplained by the model, the error sum of
squares

SSE =
k∑

i=1

ni∑
j=1

(Yij − Y i ·)
2.

Further, these components add: SSTO=SSM+SSE.



Each SS has associated with it a number, called its degrees of
freedom, which counts the number of independent pieces of data
going into the SS. The df for SSTO, SSM and SSE are n − 1,
k − 1 and n − k. These df add exactly like their SS.
The mean square is the SS divided by its df. Thus
MSM=SSM/(k − 1), and MSE=SSE/(n − k).



The test statistic for testing equality of population means is the F
statistic F =MSM/MSE. It is compared with its distribution under
H0, which is an Fk−1,n−k distribution. Large values of F support
Ha over H0.



The information about SS, df, MS and the F test is summarized in
an ANOVA table. Let’s have a look...



Analysis of Variance

Sum of Mean
Source DF Squares Square F Stat Prob > F

Model k − 1 SSM MSM F =MSM/MSE p-value
Error n − k SSE MSE
C Total n − 1 SSTO

Table: ANOVA table for the one-way model
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If the null hypothesis of equality of population means is rejected,
the next question is usually “which means differ”?
Pairs of population means can be compared using t tests or
confidence intervals.

I To test H0 : µi = µj versus Ha : µi 6= µj , perform a two-sided
t test using the tn−k distribution and the test statistic

tij0 =
Y i · − Y j ·

σ̂(Y i · − Y j ·)
,

where

σ̂(Y i · − Y j ·) =

√
MSE

(
1

ni
+

1

nj

)
.



For the feedback example, let’s test for differences between the
population means of the accurate and no feedback groups. The
sample means are 44.832 and 38.614, and MSE is 10.684. The
observed value of the test statistic is

t∗ij0 =
44.832− 38.614√

10.684
(

1
6 + 1

5

) = 3.141.

The p-value is p± = 2min(p−, p+), where
p+ = P(t14 ≥ 3.141) = 0.0036, and p− = 1− p+ = 0.9964. So,
p± = 2× 0.0036 = 0.0072.



I A level L confidence interval for µi − µj is

Y i · − Y j · ± σ̂(Y i · − Y j ·)tn−k, 1+L
2

.

Using the fact that t14,0.975 = 2.1448, a level 0.95 interval for the
difference between the population means of the accurate and no
feedback groups is

44.832− 38.614± 2.1448×

√
10.684

(
1

6
+

1

5

)
= (1.973, 10.463).



Consider the confidence interval we’ve just shown for comparing
two population means. This type of comparison is called a
pairwise comparison, since when we set the confidence level we
are only concerned with that particular comparison. If we are doing
a lot of these comparisons, we can run into problems interpreting
the confidence levels. These problems have to do with the fact
that if you do a lot of tests, you will often get a lot of false
positives. Let’s see how this works:



The problems with doing a lot of comparisons also have to do with

I Exploratory and confirmatory studies.

I Formal and informal inference, and the necessity of each.

I Data snooping and its relation to formal and informal
inference.

One possible solution is to use multiple comparison procedures.



Multiple Comparison Procedures
Two multiple comparison procedures which control the overall
error rate for all comparisons made are the Bonferroni and Tukey
procedures.

I The Tukey procedure considers all pairwise comparisons and
gives an overall level L error rate. It is based on the
distribution of the difference between the largest and smallest
mean of a set of sample means.



When studentized by dividing by estimated standard error, this
distribution is called the studentized range distribution. It is
suitable for use in data snooping. A level L Tukey interval for
µi − µj is

Y i · − Y j · ± σ̂(Y i · − Y j ·)
qL,k,n−k√

2
,

where qL,k,n−k is the Lth quantile of the studentized range
distribution. Note how the Tukey procedure controls the overall
error rate in the simulation we ran:



I The Bonferroni is a very general procedure which can be used
for any set of comparisons, not just pairwise comparisons.
However, it can be used for data snooping only if all
comparisons of the type of interest-for example, all pairwise
comparisons-are included among the possible comparisons. If
used for all pairwise comparisons, the Bonferroni interval for
µi − µj is

Y i · − Y j · ± σ̂(Y i · − Y j ·)tn−k,1− (1−L)
2N

,

where N = k(k − 1)/2 is the number of pairwise comparisons
possible.

Here’s an example...
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What Happens When Model Assumptions Are
Violated?

I Nonnormality (F test is robust. Individual and multiple
comparisons robust unless ni are small)

I Heteroscedasticity (F test is robust for equal sample sizes.
Individual and multiple comparisons are not.)

I Nonindependence (Can present serious difficulties.)



The One-Way Effects Model
The one-way effects model is the one-way means model
parametrized to emphasize the deviations of population means
from an overall mean. It is written

Yij = µ + τi + εij , j = 1 . . . , ni , i = 1, . . . , k,

where µ =
∑k

i=1 µi/k is an overall mean for all populations, and
τi = µi − µ is the effect due to the i th population.



Blocking in the One-Way Model
Example
Four types of highway surface are being tested for durability.
Engineers obtained 10 different sites on existing highways to test
these surfaces. Since the sites are on different types of highways,
the engineers decided to divide each site into four equal sections
and randomly assign one surface to each section in such a way that
all four surface types appear at each site. In reality, the test sites
were monitored periodically and a number of measures of wear
were taken on each occasion.



The response we will consider is an index of severity of wear, coded
on a scale of 0 (no wear) to 100 (severe wear). The data are found
in SASDATA.ASPHALT.
Let’s look at the data.



A Short Review of the CRD and the RCBD

In chapter 3 you studied something about experimental designs.
The two most basic designs presented there are the Completely
Randomized Design (CRD) and the Randomized Complete
Block Design (RCBD).



In a CRD treatments are assigned to experimental units completely
at random. The design of the asphalt experiment would be a CRD
if the treatments (asphalt types) were assigned to experimental
units (sections) completely at random. One possible result might
be that some sites might have more than one section with the
same asphalt type, which would defeat the purpose of dividing
each site into four sections.



In the kind of RCBD we are studying, the experimental units are
first divided into homogeneous blocks. Then, treatments are
randomly assigned to the experimental units within a block in such
a way that each unit gets a different treatment. This is what was
done in the asphalt experiment. Why is this a better design for the
asphalt experiment than a CRD?



The Randomized Complete Block Model
One useful model for data of this type is the randomized complete
block model:

Yij = µ + τi + βj + εij , i = 1, . . . , k, j = 1 . . . , b

Notice that this is an effects model with two factors: blocks,
represented by the β effects and treatments, represented by the τ
effects. Notice also the model is additive: the effects add.
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Fitting the RCB Model
The least squares estimators of the parameters are:

µ̂ = Y ··, τ̂i = Y i · − Y ··, and β̂j = Y ·j − Y ··

The fitted values are

Ŷij = µ̂ + τ̂i + β̂j

= Y ·· + (Y i · − Y ··) + (Y ·j − Y ··)

= (Y i · + Y ·j − Y ··)

The residuals are, as usual, the observed minus the fitted values,

eij = Yij − Ŷij = Yij − Y i · − Y ·j + Y ··



Checking the Fit
The fit is checked by

I Plotting residuals versus predicted, block and treatment.

I Plotting studentized residuals versus t(k−1)(b−1) quantiles.

I Looking at interaction plots.

I Testing for interaction (Tukey).

Let’s check out the fit for the asphalt data ourselves.



The Analysis of Variance
We test

H0τ : τ1 = τ2 = · · · = τk = 0
Haτ : Not all the population effects τi

are 0.

As for the one-way model, the ANOVA table shows sums of
squares, degrees of freedom and mean squares for the RCB model.



Let’s look at the analysis for the asphalt data.



Individual Comparisons
I To test

H0 : τi = τj

Ha : τi 6= τj .

we use the test statistic

tij0 =
Y i · − Y j ·

σ̂(Y i · − Y j ·)
.

Under H0, tij0 has a t(k−1)(b−1) distribution.



I A level L confidence interval for τi − τj has endpoints

Y i · − Y j · ± σ̂(Y i · − Y j ·)t(k−1)(b−1), 1+L
2



Multiple Comparisons
As for the one-way model, we may use either the Bonferroni or the
Tukey procedure to compare more than one pair of means.

I A set of Bonferroni confidence intervals for comparing N pairs
of population effects with overall confidence level L, computes
the endpoints of the interval for τi − τj as

Y i · − Y j · ± σ̂(Y i · − Y j ·)t(k−1)(b−1),1− 2(1−L)
N

When doing all k(k − 1)/2 pairwise comparisons for k
populations, take N = k(k − 1)/2.



I A set of Tukey confidence intervals for all pairwise
comparisons of k population effects with overall confidence
level L, computes the endpoints of the interval for τi − τj as

Y i · − Y j · ± σ̂(Y i · − Y j ·)
qL,k,(k−1)(b−1)√

2

The confidence level is exact for equal sample sizes from all
populations and is conservative if the sample sizes are not all
equal.



The Benefits of Blocking
Consider the ANOVA table for the asphalt data considered as a
RCBD:



and as a one-way model:



Now consider what this does for estimation. Here is a level 0.95
confidence interval for the difference in mean wear between asphalt
types 2 and 3 computed from the one-way model:

(4.915, 20.085)

And here is a level 0.95 confidence interval for the difference in
mean wear between asphalt types 2 and 3 computed from the RCB
model:

(8.963, 16.037).
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