NAME:	

1. A research team is investigating the association between a "gold standard" measure of hearing (the variable RESP_PRE) and several non-invasive measures (signal-noise of responsive emissions at different frequencies). The variables are:

RESP_PRE	The "gold standard" measure
$SN2_PRE$	Signal/noise ratio at 2 kHz
$SN4_PRE$	Signal/noise ratio at 4 kHz
$SN6_PRE$	Signal/noise ratio at 6 kHz
SN10_PRE	Signal/noise ratio at 10 kHz

SAS/INSIGHT output for the regression of RESP_PRE on all four regressors is shown in Figures 1-3.

- (a) (10 points) What proportion of the variation in RESP_PRE is explained by the regression model? ANS: $R^2 = 0.6264$.
- (b) (10 points) At the 0.05 level of significance, conduct a test for $H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$, versus $H_a:$ not H_0 . Tell the observed value of the test statistic, its *p*-value, and your conclusion.

ANS: Test statistic: $F^* = 17.19$, p-value: less than 0.0001. Since this is less than 0.05, reject H_0 , and conclude at least one β_i is non-zero.

- (c) (10 points) To see which regressor(s) are responsible for the significant relationship with RESP_PRE, for each of i = 1, 2, 3, 4, conduct a test of H_{0i}: β_i = 0, versus H_{ai}: β_i ≠ 0 at the 0.05 level of significance. What do you find? ANS: Since all p-values are less than 0.05, we reject H_{0i} for all i. Therefore, we conclude each of the regressors is significantly related to RESP_PRE.
- (d) (10 points) Is there evidence of lack of fit or violation of model assumptions? Justify your answer.

ANS: The studentized residuals show a slight left skewness, indicating that the assumption of normality is questionable. A few of the studentized residuals are slightly smaller than -2, but they do not appear to be outliers. The residual plots give no reason to suspect non-randomness.

(e) (10 points) Interpret the coefficient of SN2_PRE in the fitted model

ANS: If all other regressors are held constant, a one unit increase in SN2_PRE increases the prediction of RESP_PRE by 0.1599.

(f) (10 points) The researchers want to predict a new observation at SN2_PRE=8, SN4_PRE=7, SN6_PRE=-3, SN10_PRE=9. Find the value of the predictor based on the fitted model.

ANS:

$$\widehat{Y}_{new} = -8.9548 + (0.1599)(8) + (0.4205)(7) - (0.2360)(-3) + (0.2255)(9) = -1.9946.$$

- 2. The researchers considered a second model which includes the above regressors and adds SN3_PRE, the signal-noise ratio at 3 kHz. SAS/INSIGHT output for the resulting model is shown in Figure 4.
 - (a) (10 points) Does the t test for the significance of SN3_PRE indicate this regressor should be included in the model? Justify your answer.

ANS: No, its p-value of 0.2236 is too large to be significant.

(b) (10 points) What do the adjusted R^2 values suggest about including SN3_PRE in the model? Justify your answer.

ANS: Since $R_a^2 = 0.5952$ for this model, which exceeds its value of 0.5900 for the previous model, R_a^2 suggests $SN3_PRE$ should be included in the model.

(c) (10 points) Does multicollinearity appear to be a problem for this model? Justify your answer.

ANS: No, since all VIFs are well below 10.

3. (10 points) Consider again the model from problem 1. If $t_{41,0.975} = 2.0195$, and if a level 0.95 confidence interval for the mean response at SN2_PRE=8, SN4_PRE=7, SN6_PRE=-3, SN10_PRE=9 is (-3.0533, -0.9364), obtain a level 0.95 prediction interval for a new observation at SN2_PRE=8, SN4_PRE=7, SN6_PRE=-3, SN10_PRE=9.

ANS: We know that $(-3.0530, -0.9362) = \widehat{Y} \pm \widehat{\sigma}(\widehat{Y})t_{41,0.975} = -1.9946 \pm 2.0195\widehat{\sigma}(\widehat{Y})$, which implies that $\widehat{\sigma}(\widehat{Y}) = 0.5241$. We also know that $\widehat{\sigma}(Y_{new} - \widehat{Y}_{new}) = \sqrt{MSE + \widehat{\sigma}^2(\widehat{Y})} = \sqrt{6.3979 + 0.5241^2} = 2.5831$. Thus, the desired interval is $-1.9946 \pm (2.0195)(2.5831) = (-7.2115, 3.2217)$.

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Stat	Pr > F		
Mode 1	4	439.8435	109.9609	17.19	< .0001		
Error	41	262.3139	6.3979				
f Total	45	702 1574					

Type III Tests							
Source	DF	Sum of Squares	Mean Square	F Stat	Pr > F		
SN2 pre	1	45.0996	45.0996	7.05	0.0112		
SN4 pre	1	248.1784	248.1784	38.79	< .0001		
SN6_pre	1	50.9913	50.9913	7.97	0.0073		
SN10_pre	1	27.3612	27.3612	4.28	0.0450		

Parameter Estimates							
Variable	DF	Estimate	Std Error	t Stat	Pr > t	Tolerance	Var Inflation
Intercept	1	-8.9548	1.3925	-6.43	< .0001		0
SN2 pre	1	0.1599	0.0602	2.66	0.0112	0.8987	1.1127
SN4 pre	1	0.4205	0.0675	6.23	<.0001	0.6561	1.5242
SN6 pre	1	-0.2360	0.0836	-2.82	0.0073	0.8217	1.2170
SN10 pre	1	0.2255	0.1091	2.07	0.0450	0.6995	1.4297

Figure 1: SAS output for problem 1

Figure 2: SAS output for problem 1

Figure 3: SAS output for problem 1

Type III Tests							
Source	DF	Sum of Squares	Mean Square	F Stat	Pr > F		
SN2 pre	1	26.1122	26.1122	4.13	0.048		
SN3 pre	1	9.6536	9.6536	1.53	0.223		
SN4 pre	1	207.7148	207.7148	32.88	< .000		
SN6 pre	1	46.2557	46.2557	7.32	0.010		
SN10 pre	1	19.7395	19.7395	3.13	0.084		

Parameter Estimates							
Variable	DF	Estimate	Std Error	t Stat	Pr > t	Tolerance	Var Inflation
Intercept	1	-9.5504	1.4651	-6.52	<.0001		
SN2 pre	1	0.1307	0.0643	2.03	0.0487	0.7781	1.2853
SN3 pre	1	0.1216	0.0984	1.24	0.2236	0.7515	1.3300
SN4 pre	1	0.3983	0.0694	5.73	< .0001	0.6121	1.633
SN6_pre	1	-0.2258	0.0834	-2.71	0.0100	0.8138	1.228
SN10 pre	1	0.1961	0.1109	1.77	0.0847	0.6673	1.4986

Figure 4: SAS output for problem 2