## Ordinary Differential Equation     MA 3471   D08 Joseph D.Fehribach Syllabus of Homework Assignments

 1 1.1 pp. 15-19 Due Monday, 17 March 2008 #A (below), 1.4, 1.5i,iii, 1.25i,ii 2 2.6 pp. 72-80 Due Thursday, 20 March 2008 #2.3ii, 2.4, 2.5ii, 2.7, 2.18, 2.19ii, 2.22 3 2.6 pp. 72-80 Due Thursday, 27 March 2008 #2.13, 2.33, 2.58, 2.59, 2.60 4 3.9 pp. 142-152 Due Monday, 31 March 2008 #3.1, 3.2iii, 3.5, 3.7i, ii, iii, 3.12 5 3.9 pp. 142-152 Due Thursday, 3 April 2008 #3.8i, 3.9i, 3.11i, iv, 3.15, 3.20 6 3.9 pp. 142-152 Due Tuesday 8 April 2008 #B (below), 3.37, 3.40, 3.52 7 4.4 pp. 179-184 Due Monday 14 April 2008 #C (below), 4.2, 4.7, 4.20, 4.28 8 8.11 pp. 386-391 Due Friday 18 April 2008 #8.2b,d, 8.4, 8.11, 8.13, 8.21 9 8.11 pp. 386-391 Due Thursday 24 April 2008 #8.14, 8.15, 8.16, 8.23, 8.24 10 5.10 pp. 264-271 Due Monday 28 April 2008 # 5.1i, iii, 5.15, 5.17, 5.18, 5.20, 5.21!

• # A. Please solve and give the maximum interval of existence for
• ( i) x′ = 2t/(t2 - 25),  x(0) = ln(25)
• (ii) x′ = tan(t),  x(0) = 0
• # B. Please show that the system (3.46), (3.47) can be transformed to the equivalent polar form we discussed in class: r ′ = r (1 - r2), θ′=-1
• # C. Please find the second order solution x2 for the IVP in Example 4.1, pp. 153-154.

## Page 1 Page 2 Page 3

JDF (E-Mail: bach@wpi.edu)
Last Updated: Thursday 1 May 2008