## Ordinary Differential Equation     MA 3471   D10 Joseph D.Fehribach Syllabus of Homework Assignments

#### Pearson Educational, Inc. (Pearson/Prentice Hall), 2004.

 1 1.1 pp. 15-19 Due Friday, 19 March 2010 #A (below), 1.4, 1.5i,iii, 1.9 2 2.6 pp. 72-80 Due Tuesday, 23 March 2010 #2.3ii, 2.4, 2.5ii, 2.7, 2.18, 2.19ii, 2.22 3 2.6 pp. 72-80 Due Friday, 26 March 2010 #2.19i (find eAt), 2.24, 2.51i,iii 4 2.6 pp. 72-80 Due Thursday, 1 April 2010 #2.54ii, 2.58, 2.59, 2.60 5 3.9 pp. 142-152 Due Tuesday, 6 April 2010 #3.1, 3.2iii, 3.5, 3.7i, ii, iii, 3.12 6 3.9 pp. 142-152 Due Friday, 9 April 2010 #3.8i, 3.9i, 3.11i, iv, 3.15, 3.20 7 3.9 pp. 142-152 Due Friday 16 April 2010 #B (below), 3.37, 3.40, 3.52 8 4.4 pp. 179-184 Due Tuesday 20 April 2010 #C (below), 4.2, 4.7, 4.20, 4.28 9 8.11 pp. 386-391 Due Monday 26 April 2010 #8.2b,d, 8.4, 8.11, 8.13, 8.21 10 8.11 pp. 386-391 Due Friday 30 April 2010 #8.14, 8.15, 8.16, 8.24, 8.25 11 5.10 pp. 264-271 Due Monday 3 May 2010 # 5.1ii, iii, 5.15ii, iii, 5.17, 5.18, 5.19, 5.21!

Color Code Key

99 Problem whose solution in the back of the text is incomplete or wrong, or whose statement in the text is not precisely correct.
• # A. Please solve and give the maximum interval of existence for
• ( i) x′ = 2t /(t 2 - 25),  x(0) = ln(25)
• (ii) x′ = tan(t ),  x(0) = 0

• # B. Please show that the system (3.46), (3.47) can be transformed to the equivalent polar form we discussed in class: r ′ = r (1 - r2), θ′=-1

• # C. Please find the second order solution x2 for the IVP in Example 4.1, pp. 153-154.

## D08: Page 1, Page 2, Page 3 D10: Page 1, Page 2, Page 3

JDF (E-Mail: bach@wpi.edu)
Last Updated: Friday 7 May 2010
Copyright 2008, 2010, Joseph D. Fehribach