MA3471

Name:

Final Exam (closed book, closed notes)

D Term, 2010

Show all work needed to reach your answers. You may use any theorem we discussed in class, but cite any theorem you use.

- 1. (30 points) Suppose $A = \begin{bmatrix} 2 & 1 \\ 4 & -1 \end{bmatrix}$
 - (a) Please find the general solution for x' = Ax.

General Solution: x(t) =

(b) Please find a fundamental matrix for x' = Ax.

Fundamental Matrix: $\Phi(t) =$

(c) Please draw a rough sketch of the phase plane diagram for this system.

2. (15 points) Suppose that x' = A(t)x with

$$A(t) = \left[\begin{array}{cc} -2 & a(t) \\ b(t) & 1 \end{array} \right]$$

where a and b are periodic with period 4π . If $\mu_1 = 1/4$ is one Floquet multiplier for this system, please find another Floquet multiplier. Also, what can be said about the stability of the trivial solution $x \equiv 0$?

- 3. (21 points) Consider the ODE x' = -f(t, x) where $\forall t, f(t, x) > 0$ when x > 0; f(t, x) < 0when x < 0; and f(t, 0) = 0. Suppose that the initial condition is x(0) = 0. So $x \equiv 0$ is a solution to this IVP.
 - (a) If f is Lipschitz continuous w.r.t. x, what theorem guarantees that $x \equiv 0$ is the only solution?
 - (b) If f is not Lipschitz continuous w.r.t. x at x = 0, please explain why the solution $x \equiv 0$ is still unique.

Proof: To see that $x \equiv 0$ is the unique solution, suppose $\exists t_1 > 0$ such that

. Wolog (without loss of generality), suppose $_$. Since x is differentiable on $(0, t_1)$, it must also be on this interval, so let t_0 be the largest value of $t < t_1$ such that _____ and _____

Notice that t_0 may be positive, but at a minimum, $t_0 = 0$.

Now by ______ since x is _____

 $x(t_1) =$ ______

for some

- 4. (24 points) Please define/describe/state each of the following:
 - (a) Hamiltonian system
 - (b) integrating factor
 - (c) strict Lyapunov function
 - (d) Strum-Liouville problem

5. (10 points) Suppose that x(t), y(t) and z(t) satisfy the system

x'	=	yz
y'	=	-2xz
z'	=	xy

What can be said about any solution to this system? Please explain.