MA3471 Name: (.S\o MMS

Final Exam (closed book, closed notes) D Term, 2008

1. (15 points) Consider the ODE z" + sin(t)a:’ + 3z = 0. Please write an equivalent
1%t-order system.

Let y=x’.
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2. (20 points) Please define/describe/state each of the following:
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3. (10 points) What is the principle distinction between the hypotheses and conclusions
of the two main existence theorems that we discussed in class, the Picard- Llndelof
theorem and the Cauchy-Peano theorem.
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4. (15 points) For the ODE &' + cos(t)z = 1,

) Please find an 121tegra,t1ng factor.
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(b) Please use your integrating factor from above to write the left-hand side of the
ODE as an exact derivative.
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(c) Please find the general solution of this ODE (keeping in mind that it may not
be possible to evaluate certain integrals).
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5. (15 points) Can the Arzela-Ascoli theorem be applied to the sequence of functions
{zn(t) :==sin(nt)}, 0 <t < 7?7 Explain your answer.
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6. (15 points) Suppose that @' = A(t)z with

40 =] 4y "V |

where @ and b are periodic with period w. If gy = —1 is one Floquet multiplier for
this system, please find another Floquet multiplier. Also, what can be said about

the stability of the trivial solution z = 0? J i{\ ( A lﬁ } ﬂgf
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7. (10 points) Suppose z = ¥(t) is an orbit of the ODE z' = F(z) where F € C(R")
and z : R — R*. What condition on a function V guarantees that V' is decreasing
on the orbits of the ODE, and how do you know?
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and the trivial solution is unstable.
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