Final Exam (closed book, closed notes)

D Term, 2010

Show all work needed to reach your answers. You may use any theorem we discussed in class, but cite any theorem you use.

$$A = \begin{bmatrix} 2 & 1 \\ 4 & -1 \end{bmatrix} \quad \text{olet } (A) = -2 - 4 = -6$$
 \Rightarrow $eV(A) = \{-2,3\}$

(a) Please find the general solution for
$$x' = Ax$$
.

(a) Please find the general solution for
$$x' = Ax$$
.
For $\lambda = -2$, $A - \lambda I = A + 2I = \begin{bmatrix} 4 \\ 4 \end{bmatrix} \implies \bigvee_{1} = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$

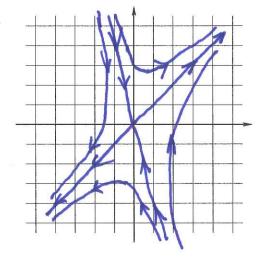
For $\lambda = 3$, $A \cdot \lambda I = A - 3I = \begin{bmatrix} -1 \\ 4 \end{bmatrix} \Rightarrow \bigvee_{2} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$

General Solution:
$$x(t) = C_1 e^{-2t} \begin{bmatrix} -1 \\ 4 \end{bmatrix} + C_2 e^{3t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

(b) Please find a fundamental matrix for x' = Ax.

Fundamental Matrix:
$$\Phi(t) = \begin{bmatrix} -e^{-2t} & e^{3t} \\ 4e^{-2t} & e^{3t} \end{bmatrix}$$

(c) Please draw a rough sketch of **C the phase diagram for this system.



(0,0) is 2

2. (15 points) Suppose that x' = A(t)x with

$$A(t) = \left[\begin{array}{cc} -2 & a(t) \\ b(t) & 1 \end{array} \right]$$

where a and b are periodic with period 4π . If $\mu_1 = 1/4$ is one Floquet multiplier for this system, please find another Floquet multiplier. Also, what can be said about the stability of the trivial solution $x \equiv 0$?

By the trace theorem M. M2 = 1/4 X=0 is asymptotically stable

3. (21 points) Consider the ODE x' = -f(t, x) where $\forall t, f(t, x) > 0$ when x > 0; f(t, x) < 0when x < 0; and f(t,0) = 0. Suppose that the initial condition is x(0) = 0. So $x \equiv 0$ is a solution to this IVP.

(a) If f is Lipschitz continuous w.r.t. x, what theorem guarantees that $x \equiv 0$ is the only solution?

(b) If f is not Lipschitz continuous w.r.t. x at x = 0, please explain why the solution $x \equiv 0$ is still unique.

Proof: To see that $x \equiv 0$ is the unique solution, suppose $\exists t_1 > 0$ such that $\star \star \sigma$. Wolog (without loss of generality), suppose $\star (t) \star \sigma$. Since x is differentiable on $(0, t_1)$, it must also be **continuous** on this interval, so let t_0 be the largest value of $t < t_1$ such that $x(t_0) = 0$ and x(t) > 0 for $t_0 < t < t_1$

Notice that t_0 may be positive, but at a minimum, $t_0 = 0$.

Now by Mean value Therene since x is olifteren

$$x(t_1) = X(t_1) - X(t_0) = X(c) (t_1 - t_0)$$

for some

But x(t.) >0 and t, -t, >0, 43

