Name:

Final

C Term, 2002

Show all work needed to reach your answers. You may use any theorem proven in our text, but cite any theorem by page number that you use.

- 1. (20 points) Each of the following statements are "intuitively obvious"; please indicate which ones are also false (cross off the false statements).
 - (a) If a set is not open, it is closed.
 - (b) If S is any set, then $\emptyset \subset S$.
 - (c) Since $\mathbb{Z} \subsetneq \mathbb{Q}$, there are a greater number of rationals than integers.
 - (d) For $i := \sqrt{-1} \in \mathbb{C}$, i > 0.
 - (e) If f is a function such that $f: x \mapsto y$, then $f^{-1}: y \mapsto x$. In other words, y = f(x) iff $x = f^{-1}(y)$.
- 2. (20 points) Please prove that the function $f: \mathbb{R} \to \mathbb{R}$ defined as

$$f(x) = \begin{cases} x \sin(\frac{1}{x}) & x \neq 0\\ 0 & x = 0 \end{cases}$$

is continuous at x = 0. Hint: This the same function considered in # 1 (b), p. 90, but here you are asked for a proof. Consider the definition of continuity. You may assume the standard properties of the sine function.

Key property | Since $|\sin(\frac{1}{x})| \le |\cos(\frac{1}{x})| \le |\sin(\frac{1}{x})| \le |\sin(\frac{1}{x})| \le |\cos(\frac{1}{x})| \le |\cos(\frac{1}{x})|$

3. (20 points) Assume that $\{s_n\}$ and $\{t_n\}$ are sequences of reals, that $\{s_n\}$ is bounded, and that $t_n o 0$ as n increases. Please prove that $s_n t_n o 0$ as n increases. Note that the definition of convergence is at the top of p. 45 in our text.

Since $\{S_n\}$ is bounded, $|S_n| \leq M \ \forall n \in \mathbb{Z}^+$. Since $t_n \to 0$, given any $E \to 0$, $\exists N s.t. \ if n > N$, $|t_n| \leq f_n$. So for n > N, $|S_n t_n| \leq M |t_n| \leq f_n$. So $f_n t_n \to 0$ also.

4. (20 points) Recall that the definition of the boundary (p. 62) is $\partial S := \overline{S} \cap \overline{CS}$. Please show that if p is a point on the boundary, than $\forall \epsilon > 0$, $B_{\epsilon}(p)$ has a nonempty intersection with both S and CS.

Let $p \in \partial S = \overline{S} \cap \overline{CS}$. Then $p \in S$ and $p \in \overline{CS}$. Suppose $p \in S$; then $p \in CS$. Suppose that $J \in PO$ S.t. $B(p) \cap CS = \emptyset$. Then since B(p) is open, $C(B_{E}(p))$ is closed, and $CS \in C(B_{E}(p))$. So $\overline{CS} \in C(B_{E}(p))$ and this contradicts the fact that $p \in \overline{CS}$. So $V \in PO$, $B_{E}(p) \cap CS \neq \emptyset$. Since the same argument works if one starts with $p \in CS$ the result tollows.

5. (20 points) Let (E, d) be a metric space. Suppose that f(x, y) := 2d(x, y) and $g(x, y) := (d(x, y))^2$. Please prove or disprove each of the following statements:

(a) (E, f) is a metric space. (1) Since $d(p, 2) \ge 0 \ \forall p, g \in E, \text{ for } (p, g) = 20(p, g) \ge 0 \ \forall p, g \in E$ (270!).

(2) Since d(p,2) = 0 iff p=9 then f(p,9)=20(pg)=0 iff p=9 (2+0!).

(3) Fince d(p,g) = d(g,p) + p,geE, then f(p,g) = 2d(p,g) = 2d(g,p) - f(g,p) + p,g ∈ E.

(4) Since d(p,g) & d(p,r) + d(r,g) the Vp,g,rEE

fip,g) = 2d(r,g) & 2 (d(p,r) + d(r,g)) = 2d(p,r) + 2d(r,g) & f(p,r) + f(r,g),

Since I satisfies all 4 of the defining properties, it is a

(b) (E, g) is a metric space.

Suppose there are 3 points s.t. d(p,q)=1, $d(p,r)=\frac{1}{2}$ and d(r,g)=1/2. For example, let $p,q,r\in R$ with p=0, g=1, r=1/2, and use the Euclidean metric. Then $g(p,q)=(d(p,q))^2=1>g(p,r)+g(r,g)$

= $(d(p,r))^2 + (d(r,g)^2 = (\frac{1}{2})^2 + (\frac{1}{2})^2 = \frac{1}{2}$

So this g can not satisfy the triangle inequality, hence it is no metric. Any valid (10)

Any Valid \$10 courter example