MA3831 Name: Mﬁm s

Final

C Term, 2002

Show all work needed to reach your answers. You may use any theorem proven in our text,
but cite any theorem by page number that you use.
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1. (20 points) Each of the following statements are “intuitively obvious”; please indi-

cate which ones are also false (cross off the false statements).

/(,a)ﬁf a set is not open, it is closed.
(b) If S is any set, then ) C 3.
,(»C)/ Since Z C Q, there are a greater number of rationals than integers.
(& Fori:=+/—1€C,i>0.
“If f is a function such that f : 2 — y, then f~' : y — 2. In other words,

y=flz)iffz=f"y).

. (20 points) Please prove that the function f: R — R defined as

zsin(l) z#0
f(m):{ O() z =10

is continuous at z = 0. Hint: This the same function considered in # 1 (b), p. 90,

but here you are asked for a proof. Consider the definition of continuity. You may | L

assume the standard properties of the sine function. 1
Jf(x)-f/a)/ [x35(3) - of = [X|ls~ () ) <C
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3. (20 points) Assume that {s,} and {¢,} are sequences of reals, that {s,} is bounded,

and that ¢, — 0 as n increases. Please prove that s,t, — 0 as n increases. Note
Pay
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‘that the definition of convergence is at the top of p. 45 in our text. v,
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4. (20 points) Recall that the definition of the boundary (p. 62)is 85 := SNCS. Please
show that if p is a point on the boundary, than V ¢ > 0, B.(p) has a nonempty
intersection with both S and CS.
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Since 7% Sdine «?rﬁ’ﬂ-m»«r mv,és f one stas wiHh /De- C.’;.’ 7’%& result
Follows.

5. (20 points) Let (F,d) be a metric space. Suppose that f(z,y) := 2d(z,y) and
g(z,y) := (d(z,y))?. Please prove or disprove each of the following statements:
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Luefirie,
(b) (£, g) is a metric space.
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