MA3831

Name:

Final

C Term, 2002

Show all work needed to reach your answers. You may use any theorem proven in our text, but cite any theorem by page number that you use.

- 1. (20 points) Each of the following statements are "intuitively obvious"; please indicate which ones are also false (cross off the false statements).
 - (a) If a set is not open, it is closed.
 - (b) If S is any set, then $\emptyset \subset S$.
 - (c) Since $\mathbb{Z} \subsetneq \mathbb{Q}$, there are a greater number of rationals than integers.
 - (d) For $i := \sqrt{-1} \in \mathbb{C}, i > 0$.
 - (e) If f is a function such that $f : x \mapsto y$, then $f^{-1} : y \mapsto x$. In other words, y = f(x) iff $x = f^{-1}(y)$.
- 2. (20 points) Please prove that the function $f : \mathbb{R} \to \mathbb{R}$ defined as

$$f(x) = \begin{cases} x \sin(\frac{1}{x}) & x \neq 0\\ 0 & x = 0 \end{cases}$$

is continuous at x = 0. **Hint:** This the same function considered in # 1 (b), p. 90, but here you are asked for a proof. Consider the definition of continuity. You may assume the standard properties of the sine function.

3. (20 points) Assume that $\{s_n\}$ and $\{t_n\}$ are sequences of reals, that $\{s_n\}$ is bounded, and that $t_n \to 0$ as *n* increases. Please prove that $s_n t_n \to 0$ as *n* increases. Note that the definition of convergence is at the top of p. 45 in our text. 4. (20 points) Recall that the definition of the *boundary* (p. 62) is $\partial S := \overline{S} \cap \overline{CS}$. Please show that if p is a point on the boundary, than $\forall \epsilon > 0$, $B_{\epsilon}(p)$ has a nonempty intersection with both S and CS.

5. (20 points) Let (E, d) be a metric space. Suppose that f(x, y) := 2d(x, y) and g(x, y) := (d(x, y))². Please prove or disprove each of the following statements:
(a) (E, f) is a metric space.

(b) (E,g) is a metric space.