Quiz 4

B Term, 2011

Show all work needed to reach your answers.

(1) (10 points) Please prove that $\log(1+x) < x$ for all x > 0. Hint: Apply the mean value theorem to $h(x) = x - \log(1+x)$.

Let $h(x) = x - \log(1+x)$; then $h(x) = 1 - \frac{1}{1+x} = \frac{x}{1+x}$.

By the mean value theorem, h(x) - h(0) = h'(c) (x - 0) for some CE(0, x) h(x) - h(0) = h'(c) Since h'(c) > 0 f(c) >

(2) (10 points) Suppose $f_n : \mathbb{R} \to \mathbb{R}$ is continuous $\forall n$. If $f_n \to f$ uniformly, please show that f is also continuous.

Proof: Since $f_n \to f$ uniformly, given $\epsilon > 0, \exists N \in \mathbb{Z}^+$ such that $\forall x \in \mathbb{R}$, if n > N then $f_n = \frac{f_n(x) - f_n(x)}{\sqrt{3}}$. Now since for each n the function $f_n = \frac{f_n(x) - f_n(x)}{\sqrt{3}}$ such that $\forall x, y \in \mathbb{R}$, if $|x - y| < \frac{f_n(x) - f_n(x)}{\sqrt{3}}$. Next using the $f_n = \frac{f_n(x) - f_n(x)}{\sqrt{3}}$ inequality, one finds that whenever $f_n = \frac{f_n(x) - f_n(x)}{\sqrt{3}}$.

 \bigcirc and \bigcirc > N,

 $|f(x) - f(y)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)|$ $< \frac{f_n}{3} + \frac{f_n}{3} + \frac{f_n}{3} = \frac{f_n}{3} = \frac{f_n}{3}$

So f is continuous. \square