Quiz 5

B Term, 2011

Show all work needed to reach your answers.

1. (10 points) Suppose that $[a.b] \subset \mathbb{R}$ is a finite interval, and that $f_n : [a,b] \to \mathbb{R}$ is a sequence of functions. What conditions will guarantee that

 $\lim_{n \to \infty} \left(\int_a^b f_n(x) dx \right) = \int_a^b \left(\lim_{n \to \infty} f_n(x) \right) dx$

Two conditions are sufficient:

6. The lim f. (x) converges uniformly.

This is the uniform convergence theorem

2. (5 points) Please give an example of a series that is convergent, but not absolutely convergent.

convergent. Significant the afternating harmonic series; $\frac{2}{1} \left| \frac{(-1)^{i-1}}{i} \right| = \frac{2}{1} \left| \frac{1}{i} \right| = \frac{2}{1} \left$

3. (10 points) Suppose that for the series $\sum_{n=1}^{\infty} a_n$, there is a real number $\rho < 1$ such that

 $|a_n|^{\frac{1}{n}} < \rho$. Please show that the series converges absolutely. **Hint**: Comparison test to a geometric series.

Since $|a_n|^n < \rho$, we know that $|a_n| < \rho^n$. Since p < 1, $\sum_{n=1}^{\infty} \rho^n = \frac{1}{1-\rho}$ is a convergent glornetric series. So by the companison test, $\sum_{n=1}^{\infty} |a_n| = \frac{1}{1-\rho}$

convenges and thus by definition \(\frac{2}{2} \) an converges absolutely.