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Abstract Glimm’s method is used to compute solutions of
initial-boundary value problems for the nonlinear system of equations
describing the motion of an elastic string. For certain initial data, nu-
merical results suggest the existence of a stable, approximately periodic
solution containing no shocks. This solution consists of two new exact
solutions which are patched together by the numerical algorithm.
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INTRODUCTION

Consider an elastic string in the plane whose configuration in R? at time #
is specified by a function r(-,t) : [-1,1] — R®. The interval [—1,1]} is the
reference comfiguration, each point of which identifies a materal point in the
string. Let £ = |r.(z,t}| be the local elongation, and let T'(£) be the tension,
where T : (0,c0) — R is a smooth function. In the absence of external forces,
assuining constant density and fixed endpoints a distance L apart, the initial

boundary value problem for the string is formulated as follows?.
' 1




2 J. D. FEHRIBACH AND M. SHEARER

[-Z:-gé-)-r,(x,t)] =ry, -—-l<zr<l, t>0 (1.1)
(P r(-1,6) = (0,0), r(1,4) = (L,0), t > 0, (1.2)
r(z,0) = f(z), rfz,0)=g(z), -l<z<l (1.3)

In this paper, the tension is taken to satisfy

(a) T(1)=0,
(b)Y T >TE}E>0, 15¢< brax, (1.4)
(e) T"(€)<0, 1 <€ < Emax-

Conditions (1.4) guarantee that (1.1} is a strictly hyperbolic system for
1 < £ < €max, With two genuinely nonlinear characteristic families and two
linearly degenerate characteristic families. For numerical calculations, the
tension function T(£) = 4€né, with £n,x = €, was used.

In §2, we present two farnilies of new exact solutions of (1.1). {Other

explicit solutions have been given by Rosenau and Rubin®1°,

Each of our
solutions corresponds to a vertical motion of the string. In the first solution,
the string is straight and accelerates around a single fixed point {cf. Fig.1a).
In the second, the string is curved and its shape does not change in time;
the string accelerates due to its curvature and nonzero tension {cf. Fig.1b).
The significance of these solutions is that when they are combined to form a
periedic function by matching, the periodic function is an approximate solu-
tion of (1.1}, (1.2) that resembles numerical solutions that are approximately
periodic.
Numerical sclutions are obtained from a deterministic version of Glimm’s

numerical method?. In Glimm’s methed, the Riemann problem plays a cen-

tral role. (The Riemann problem for (P) consists of (1.1), (1.3), with f'(z)

and g(x) constant on each side of a single jump discontinuity.} For large sys-
tems, it is generally inefficient to compute solutions of Riemann probléms,

event when the Riemann problemn has been solved analytically. For the elastic
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string, however, the solution is computed by a simple algorithm outlined in
Shearer!!*. Glimm's method displays shocks sharply, and can therefore be
used to detect the formaticn of shock waves. ‘

In the numerical experiments described in §3, we first choose iniiie!
data which would yield a mode of vibration for the linear wave equation,
and observe the formation of shock waves in finite time, as expected for the
noclinear problem. However, with somewhat different initial data, persistent
oscillations of the string are observed, which are interpreted as numerical
evidence of a time periodic solution of (P). The structure of these approxi-
mately periodic numerical solutions led to the discovery of the exact solutions
of system (1.1} described in §2.

The approximately periodic numerical solution combires the explicit
solutions as follows. Near its fixed endpoints, the string is straight and ro-
tates; the central portion of the string is curved and accelerating. When
the string is at its maximum amplitude of vibration, the boundaries between
the two types of solutions are at the endpoints, and the curved central solu-
tion extends along the entire string. As the string moves towards a straight
horizontal configuration, the boundaries move inward towards the center of
the string. The entire solution depends upon a single parameter, which is
roughly the amplitude of the vibration. Analytically, the two explicit solu-
tions match only to first order in the amplitude, but the numerical solution
seems to adjust for the higher order discrepancies by allowing small horizon-
tal velocities, without the adjustments growing in time or leading to shock

formation.

2. Exact Solutions

In this section, we describe in detail two families of exact solutions involving

*Earlier solutions of Riemann problems were given by Mihailescu and Suliciu [7,8]. These
papers have been overlooked in the recent literature.
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only vertical motion of the string. We then combine the exact solutions to
construct a time periodic approximate solution of (1.1}, (1.2). It is convenient
to write equation (1.1} as a 4 x 4 first order system. Let U = (p,q,u,v) =
(rz,re), and let € = (p? + ¢*)¥. Then (1.1) becomes

U, = F(U),, (2.1)
where F(p, q,u,v) = (u,v,pT(£)/€, ¢T(£)/€).

Theorem 1: Equation (2.1) admits two families of solutions with zero hori-
zontal velocity:
(i) f U = Up(z,t) = (p(z,t},¢(t),0,v(z)) is a C* solution of (2.1),

then there are constants py, gg, v, and ¢ such that
UD(I)t) = (Pﬂsq() +Ct:01 ] +C.'£). (22)

(i) ¥ U = Upn(z,t) = (p(z,1),4(z),0,v(t)) is a C! solution of (2.1)
with ¢(0) = 0, then there a: constants « and vy, and 8 > 0 such that

Unlz, t) = (Q(z; &, 71, azQ(z; &, )0, ve + 1) (2.3)

where

Tt (8y/T+{az)?)
1+ (az)? '

Proof: (i) Substitute U{z,t) = (p(z, t), ¢(t},0,v(z)} into (2.1). The forms of

Qz;a, f) = (2.4)

g and v follow immediately since g, = v;. Also p; = u; = 0. Now the third
component of (2.1) becomes
) ] [( ' T(E)) r T(«f)]
— =|{T{)— —= % + 2 p, =u, =0.
[EP: ©-=2) & B8], -
By assumption (1.4), the large bracketed expression is always positive; thus
p: = 0. Similarly, the fourth component of (2.1) is trivially satisfied since

q,=v.-:0.

APPROXIMATELY
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(i) Substitute U(z,1) = (p(z.1), ¢(z),0, v(2)} into (2.1). Again py =

u; = 0. The fourth component of (2.1) implies that v(t) = v; + ht and,
considering the normalization ¢(0)} = 0, that I%%q = hz, where vy and % are
constant. Since Hf—)p = f3 is constant and £? = p* + ¢7, the expressions for
p and g follow with h = af. The proof is complete.
Remark: For (1) above, the assumption that ¢(0) = 0 implies that p is
even in z and that ¢ is odd. Hence the string is symmetric about ¢ = 0.
More generally, one could drop this assumption and consider a nonsymmetric
string; then @q = hz + v where v is an additional constant. Then U, and
U, both constitute four-parameter families of solutions,

The solution U = Uy(z,t) of (2.2) satisfies the left boundary condition
of {1.2) when vy = ¢ and the right boundary condition when vy = —¢, With
vp fixed at either of these values, this solution represents a straight string
swinging about the endpoint with each point on the string moving vertically
(ef. Fig. la). On the other hand, U = U,,(z,t) given by {2.3) represents

a uniformly accelerating string having convex or concave shape, ¢f. Fig. (1b).

{a) (b}

FIGURE 1 Two exact solutions. In (a) the string is contracting
and swinging about a fixed point. The velocity is increasing in £ and
constant in time. In (b} the string is accelerating uniformly in time

{a < 0 for the configuration shown).
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The acceleration results from the net force of tension {due to curvature) on
the string segment.
A time periodic function U, can now be created by matching U, and
Upm. To do so, take Uy = Uj near each endpoint, U, = Uy, near the middle
of the string, then match the three functions to lowest order in the param-
eters. One finds the following function U,(r,t;a), defined over a quarter
period 0 < t < /& /T (6o} as
Upy(z, t;a), —l<z <t /T(&) /& —1
Up(z tia) = { Un(z,tia),  t/T(&)/€a~1 <z <1-t/T(&)/6
Ug(z,t; a), 1 -t /T(&)/lo <z <1

where, in (p, g, u,v) coordinates,

UL(I,t; a) = Eﬂ(lxa(l —t T(fﬂ)/fﬂ)n 01 Gy T(&O)/EU(]- + I)):

Us(z, £ 0) = (Q(z; 9, T(&o)), ~azQ(z; 8, T(£0)), 0, —aT(éo)t),

Ug(z,t;a) = &L, a(tv/T(&)/6o — 1),0,a/T(&)/bo(z — 1)),
and Q(z; «, 3) is given by (2.4).

Remarks:

(i) The function Upy(z,t;a} satisfies (2.1} away from z, =
(1 — £,/T(&)/€). The matching at these points is exact for the velocities
and for the slope of the string, ¢/p. However, the elongation £ = (p? + q2)1/2
(and hence the tension) experiences a jump of magnitude O{a®) at z.. Thus
U,(z,t;a) is not a weak solution of (2.1), since there is no corresponding
jump in longitudinal velocity. Note that U, is set up to satisfy the fixed
endpoint boundary conditions (1.2): ry(+1,¢) = 0.

(i) At t = 0, the string staris from rest with slope ¢/p = —az. At

t=/&/T(t)},

U (2, tia) = { (60,0,0, —ay/TEYea(1 +2)), ~l<z<0

(€0,0,0,—a/T(&)eo(1 —2)), O<z<1’

APPROXIMATELY
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so that the string is horizontal, and the middle solution U,, has disappeared.
The equilibrium length L of the string is related to £ by L = 2¢,.

(iii) While ¢, is determined by the equilibrium length of the string, the
second parameter a is arbitrary and will be referred to as the amplifude. In

particular, for a = 0, Eq. (2.3) reduces to the equilibrium solution
U,(z,t;0) = (£&,0,0,0). (2.5)

(iv) The function U,(z,t;a) may be extended for all time by shifting

and reversing time in the obvious fashion. For example, for the next quarter

period, /€0 /T (o) <t < 24/€/T(&)

Ur(z,t;a), —-1<z<1—t/T{&)/ 6
Up(z,tiay = { Uplz,tia), 1—1t4/T(€o)/k < z < t/T(ke}/Co — 1
Ur(z,t;a), t/T(6)/&—1<z <1

where

Uni(z, ) = (@i, T(6)), azQ(si 6, T(60)), 0, aT (o)t ~ 2v/Eo/ T(E)))

The period of U, is 4,/€/T(&). The graph of U, is shown in Fig. 2 over
a full period.

{v) By linearizing {2.1) about the equil-ibrium solution {2.5), one ob-
tains the classical wave equation modeling small vertical vibrations of the
string. If U, is expanded in a, the lowest order terms are the solution of the
classical wave equation. Also the period of U, is the period of the principal

mode of vibration for the linearized solution.

3. Numerical Results:

In this section, we discuss numerical experiments conducted on the initial

boundary value problem (P) using the deterministic version of Glimm's
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v q
4 v
(a) t =0 (h)0<t<T° (c) t=To
P P
q 4 v
> v q 8
(d) To <t < ZTO (e} t = ZTD (£) 2‘1:0 <t < 3To
7 ___A_p
v P
v
q v
QT g
-
(g) t= STO (h}) BTO <t < <'+T° (1) ¢ = 4T0

FIGURE 2 One full period for U,. In (a), (b) and (c), U, is simply
U; in {c) and {g), U, is only Uy, and Ug. The other parts of the
figure show the transition from one type of solution to the other. Note

that the matching for p and g is not exact. T, =J/5,/T(£,)

method. A detailed discussion of the particular version of Glimm’s method
used is given in Fehribach®. It is similar to the deterministic version of
Glimm’s scheme proposed by Colella?, in that it is based on a van der Cor-
put sequence to define the sampling points. The interval [-1, 1] is divided
into 100 subintervals, so that the spacing between Riemann problem grid
points is Az = 1/100; for the tension function T(E) = 4né, 1 < £ < e,
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the choice At = Az/3 satisfies the Courant Friedrichs Lewy condition. In
Fehribach®, we give numerical results for sample problems designed to test
the code, and to explore simple properties of the equations, such as binary
wave interactions, shock formation, and repeated reflections of waves at the
endpoints. Here, we discuss numerical results for the initial boundary value
problem, with various choices of initial data, to illusirate shock formation
and to demonstrate numerical evidence of a stable time periodic solution.

To discuss shock formation, we first consider the families of character-
istic fields. These are described in detail in'1-!%, There are two families of
fields, each with two characteristic speeds that differ only in sign. One family
consists of longitudinal waves; across these waves, the elongation (and ten-
sion) changes, but the slope remains constant. These waves satisfy the scalar
nonlinear wave equation obtained from (1.1) by taking r and r, to be pro-
portional to a constant vector. Longitudinal waves are genuinely nonlinear
under condition {1.4). The second family of characteristic fields corresponds
to waves in which the slope of the string varies while the elongation remains
constant, These are the transverse waves; they are linearly degenerate. In
linearizing system (1.1) about an equilibrium solution, it is the transverse
wave family that gives rise to the familiar linear wave equation used to ap-
proximate small amplitude transverse vibration.

Since shock waves in a solution imply the dissipation of energy, a pe-
riodic solution necessarily would have no shocks. Keller and Ting® have
shown that there exists no purely longitudinal periodic solution of (1.1},
since purely longitudinal motion leads to the formation of shocks. When
transverse motion is included, one still might expect longitudinal waves to
develop, grow, and lead to shocks. However, no analytic resulis cover this
situation precisely. It is known that for small compactly supported initial

data, provided the longitudinal component of the initial data is sufficiently
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large in comparison to the transverse component, then shocks form in finite
time [6], but the analysis depends on wave interactions taking place over a
limited time. For the initial boundary value problem, the wave interactions
continue indefinitely, and the mechanism of shock formation is more subtle.

Computations shown in Fig. 3 illustrate shock formation. {Note that
only p, ¢ and £ are shown.) The initial data U(z, 0} = (1.5, -2 sin rz,0,0) is
shown in Fig. 3a. Note that the horizontal component of the local elongation
is initially constant. This initial data, if posed for the linear wave equation,
would produce the first harmonic of the fundamental mode. In Fig. 3b
{t = 1.707), small discontinuities appear in £, indicating the formation of

shocks in the longitudinal family.

[ f\ 2
P
' .
0 "
-1 0 . S+ : 5.
a

i q 2L
(a) t =9 (b} & = 1.707 (512 iterations)

FIGURE 3 Shock formation. The initial data is shown in (a). In

(b) the discontinuities in £ imply the formation of shocks.

While the special functions U, (z,t;a) of §2 can be matched only to
lowest order in the amplitude a, numerical evidence indicates that a family
of approximately periodic solutions, parameterized by amplitude and resem-
bling U,(z,t;a), exists for large amplitudes and persists for surprisingly

long times. The numerical algorithm seems to patch smoothly together the
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exact solutions given in Theorem 1, and errors in the patching do not ap-
pear to grow with time. These approximately periodic solutions differ from
U,(z,t;a) in two ways: The horizontal velocity for these solutions, though
small, is distinctly nonzero. Also the period of oscillation is somewhat less
than the period for the corresponding U,(z,t;a). Numerically both the
horizontal velocity and the correction in the period of oscillation appear to
be second order in the amplitude a. These results are consistent with the
perturbation expansion given for periodic solutions of (1.1), (1.2) by Keller
and Ting®. In this expansion both quantities are exactly second order in
amplitude.

In Fig. 4, we display numerical resuits using 100 subintervals with

At = Az /3. The initial data (shown in Fig. 4a) is
U(z,0) = (Q(z; 2, T{1.5)), 2=zQ(z; 2,T{1.5)},0,0).

This, of course, is exactly Upy(z,0, —2) with § = 1.5. Note that the relative
sizes of these configurations are similar to those in Fig, 3. Figure da-c shows
one quarter of a period. The period is approximately 3.5. In comparison,
the period for U,(z,t;2) with { = 1.5 is 3.84679. Also note that the max-
imum value of u appears to occur near ¢ = 3; this value is approximately
1/2. Calculations for this configuration have been carried through four os-
cillations, and although numerical noise sets in, the pattern and the period
of oscillation remain unchanged. Recall that in Fig. 3, shocks had formed
by t ~ 1.707.

As a second example, consider the initial-boundary value problem
shown in Fig. 5. These calculations were carried out on an IBM 3081 (all
previous calculations were performed on PC’s). Again 100 subintervals were

used. The initial data is

U("T’O) = (273:’010)
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(a)

(b} t = 0.4267 (128 iterations) (c) t = 0.8533 (256)

FIGURE 4

The first quarter period of an approximately periodic

solution. The initial conditions representing a convex string held above

the honizontal axis are given in (a). In (b) the string is accelerating

downward. In (c} it is nearly horizontal with the middle section moving

downward with maximum speed.

which gives the string the initial parabolic profile r(z,0) = (2z+2, 1(z?-1)).

This data corresponds approximately to Up(z,t; —1) with § = 2; the period

for this U, is 3.39729. The maximum value of u observed in this run lies

o
IS

APPROXIMATELY
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and that of the previous example
amplitude. However, the correctio
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between 0.1 and 0.15. The difference between this maximum value for u
and that of the previous example is consistent with u being second order in
amplitude. However, the correction to the period is so small as to be difficult

to measure. By comparing Fig. 5a, 5b, and Sc, one sees that the period of

(a)
2 P
/q
t=0 0/ u=0=v
-2
-1 0 1
///

(b} t = 3.413 (1024 iterations) (c) t = 54.61 (16384)

FIGURE 5 A second approximately period solution. The initial
conditions are given in (a). Here the string is initially held concaved
below the horizontal axis. Plots (b} and (¢} represent one and sixteen

complete oscillations respectively.

the numerical solution is approximately 3.4. (In Fig. 5c, the string is slightly
past the initial configuration.} Note that Fig. 5b and 5c represent 1 and 16
complete oscillations respectively, The patterns continue to repeat until they
are obscured by numerical noise. Calculations made using 300 subintervals

reduce this noise and suggest that the oscillations persist indefinitely.
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1. INTRODUCTION

We consider the following quas

L
utt(x.t) - q(fo qu(y.t)l

with the initial and boundary

ulx,0) = uo(x),
ut(x,o) = ul(x) .

u{0,t) = u{L,t) =0,

{*} The author is a member of



