WPI Logo

Basic Real Analysis     MA 500   F14

Joseph D. Fehribach



Syllabus of Homework Assignments

Maxwell Rosenlicht, Introduction to Analysis, Scott, Foresman, 1968 (Dover, 1985).


          1a *  Due   5 September   Please show that the rationals are countably infinite, i.e., count them.
          1bpp. 12-13 Due 10 September # 2a, 3a,c, 4c,d, 7b
       
          2pp. 12-13 Due 17 September # 7d,e, 8e, 9
        pp. 29-30     # 1, 3, 4b, 5a,d
       
          3pp. 30-31 Due 24 September # 9, 10, 13, 14 (find only a rational x)
        p. 61     # 1a,b
       
          4pp. 61-62 Due   1 October # 3, 4, 7, 9, 13
       * A. Prove that the intersection of a finite number of open sets Gi is open.
       * B. Give an example where the countably infinite union of closed sets is not closed.
       
          5pp. 62-64 Due   8 October # 15, 16a, 17a, 18, 30a
       
          6* Due 29 October A. Please give an example to show why the nesting property fails
       * for a sequence of nonempty, closed, but unbounded sets in Rn .
       p. 64 # 26, 29
       
          7pp. 90-92 Due 5 November # 1b,d, 9a, 10b
        * Z. (i) Please show that limh -> 0 (cos h - 1)/h = 0
       *    (ii) Please use the definition of the derivative to find d/dx(cos x)
       
          8pp. 108-110 Due 12 November # 1a,b, 3a, 4, 6, 14
       
          9p. 132 Due 19 November # 1, 2, 4
        * Q. Suppose |f | is integrable on [a,b] . Please give a counter example to show
       *          that this does not imply that   f   is integrable.
       
       10p. 133 Due 25 November # 8, 9, 11, 12, 15
       
       11pp. 160-161 Due   5 December # 1, 3
        pp. 191 # 3, 4


Exams





JDF (E-Mail: bach@wpi.edu)
meest recente update: Friday 28 November 2014
Copyright 2014, Joseph D. Fehribach